ﻻ يوجد ملخص باللغة العربية
Recent work on Ising-coupled double-quantum-dot spin qubits in GaAs with voltage-controlled exchange interaction has shown improved two-qubit gate fidelities from the application of oscillating exchange along with a strong magnetic field gradient between adjacent dots. By examining how noise propagates in the time-evolution operator of the system, we find an optimal set of parameters that provide passive stroboscopic circumvention of errors in two-qubit gates to first order. We predict over 99% two-qubit gate fidelities in the presence of quasistatic and 1/$textit{f}$ noise, which is an order of magnitude improvement over the typical unoptimized implementation.
Singlet-triplet qubits in lateral quantum dots in semiconductor heterostructures exhibit high-fidelity single-qubit gates via exchange interactions and magnetic field gradients. High-fidelity two-qubit entangling gates are challenging to generate sin
In addition to magnetic field and electric charge noise adversely affecting spin qubit operations, performing single-qubit gates on one of multiple coupled singlet-triplet qubits presents a new challenge---crosstalk, which is inevitable (and must be
Charge noise is the main hurdle preventing high-fidelity operation, in particular that of two-qubit gates, of semiconductor-quantum-dot-based spin qubits. While certain sweet spots where charge noise is substantially suppressed have been demonstrated
We consider a system of two purely capacitively-coupled singlet-triplet qubits, and numerically simulate the energy structure of four electrons in two double quantum dots with a large potential barrier between them. We calculate the interqubit coupli
We investigate a method for entangling two singlet-triplet qubits in adjacent double quantum dots via capacitive interactions. In contrast to prior work, here we focus on a regime with strong interactions between the qubits. The interplay of the inte