ترغب بنشر مسار تعليمي؟ اضغط هنا

A Verified Optimizer for Quantum Circuits

149   0   0.0 ( 0 )
 نشر من قبل Kesha Hietala
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present VOQC, the first fully verified optimizer for quantum circuits, written using the Coq proof assistant. Quantum circuits are expressed as programs in a simple, low-level language called SQIR, a simple quantum intermediate representation, which is deeply embedded in Coq. Optimizations and other transformations are expressed as Coq functions, which are proved correct with respect to a semantics of SQIR programs. SQIR uses a semantics of matrices of complex numbers, which is the standard for quantum computation, but treats matrices symbolically in order to reason about programs that use an arbitrary number of quantum bits. SQIRs careful design and our provided automation make it possible to write and verify a broad range of optimizations in VOQC, including full-circuit transformations from cutting-edge optimizers.


قيم البحث

اقرأ أيضاً

79 - Robert Sison 2020
Proving only over source code that programs do not leak sensitive data leaves a gap between reasoning and reality that can only be filled by accounting for the behaviour of the compiler. Furthermore, software does not always have the luxury of limiti ng itself to single-threaded computation with resources statically dedicated to each user to ensure the confidentiality of their data. This results in mixed-sensitivity concurrent programs, which might reuse memory shared between their threads to hold data of different sensitivity levels at different times; for such programs, a compiler must preserve the value-dependent coordination of such mixed-sensitivity reuse despite the impact of concurrency. Here we demonstrate, using Isabelle/HOL, that it is feasible to verify that a compiler preserves noninterference, the strictest kind of confidentiality property, for mixed-sensitivity concurrent programs. First, we present notions of refinement that preserve a concurrent value-dependent notion of noninterference that we have designed to support such programs. As proving noninterference-preserving refinement can be considerably more complex than the standard refinements typically used to verify semantics -- preserving compilation, our notions include a decomposition principle that separates the semantics -- from the security-preservation concerns. Second, we demonstrate that these refinement notions are applicable to verified secure compilation, by exercising them on a single-pass compiler for mixed-sensitivity concurrent programs that synchronise using mutex locks, from a generic imperative language to a generic RISC-style assembly language. Finally, we execute our compiler on a nontrivial mixed-sensitivity concurrent program modelling a real-world use case, thus preserving its source-level noninterference properties down to an assembly-level model automatically. (See paper for complete abstract.)
93 - Kartik Singhal 2021
As quantum computers become real, it is high time we come up with effective techniques that help programmers write correct quantum programs. In classical computing, formal verification and sound static type systems prevent several classes of bugs fro m being introduced. There is a need for similar techniques in the quantum regime. Inspired by Hoare Type Theory in the classical paradigm, we propose Quantum Hoare Types by extending the Quantum IO Monad by indexing it with pre- and post-conditions that serve as program specifications. In this paper, we introduce Quantum Hoare Type Theory (QHTT), present its syntax and typing rules, and demonstrate its effectiveness with the help of examples. QHTT has the potential to be a unified system for programming, specifying, and reasoning about quantum programs. This is a work in progress.
We present sqire, a low-level language for quantum computing and verification. sqire uses a global register of quantum bits, allowing easy compilation to and from existing `quantum assembly languages and simplifying the verification process. We demon strate the power of sqire as an intermediate representation of quantum programs by verifying a number of useful optimizations, and we demonstrate sqires use as a tool for general verification by proving several quantum programs correct.
86 - Fangyi Zhou 2020
With distributed computing becoming ubiquitous in the modern era, safe distributed programming is an open challenge. To address this, multiparty session types (MPST) provide a typing discipline for message-passing concurrency, guaranteeing communicat ion safety properties such as deadlock freedom. While originally MPST focus on the communication aspects, and employ a simple typing system for communication payloads, communication protocols in the real world usually contain constraints on the payload. We introduce refined multiparty session types (RMPST), an extension of MPST, that express data dependent protocols via refinement types on the data types. We provide an implementation of RMPST, in a toolchain called Session*, using Scribble, a multiparty protocol description toolchain, and targeting F*, a verification-oriented functional programming language. Users can describe a protocol in Scribble and implement the endpoints in F* using refinement-typed APIs generated from the protocol. The F* compiler can then statically verify the refinements. Moreover, we use a novel approach of callback-styled API generation, providing static linearity guarantees with the inversion of control. We evaluate our approach with real world examples and show that it has little overhead compared to a naive implementation, while guaranteeing safety properties from the underlying theory.
We generalize quantum circuits for the Toffoli gate presented by Selinger and Jones for functionally controlled NOT gates, i.e., $X$ gates controlled by arbitrary $n$-variable Boolean functions. Our constructions target the gate set consisting of Cli fford gates and single qubit rotations by arbitrary angles. Our constructions use the Walsh-Hadamard spectrum of Boolean functions and build on the work by Schuch and Siewert and Welch et al. We present quantum circuits for the case where the target qubit is in an arbitrary state as well as the special case where the target is in a known state. Additionally, we present constructions that require no auxiliary qubits and constructions that have a rotation depth of 1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا