ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploiting flux ratio anomalies to probe warm dark matter in future large scale surveys

106   0   0.0 ( 0 )
 نشر من قبل David Harvey
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Flux ratio anomalies in strong gravitationally lensed quasars constitute a unique way to probe the abundance of non-luminous dark matter haloes, and hence the nature of dark matter. In this paper we identify double imaged quasars as a statistically efficient probe of dark matter, since they are 20 times more abundant than quadruply imaged quasars. Using N-body simulations that include realistic baryonic feedback, we measure the full distribution of flux ratios in doubly imaged quasars for cold (CDM) and warm dark matter (WDM) cosmologies. Through this method, we fold in two key systematics - quasar variability and line-of-sight structures. We find that WDM cosmologies predict a ~6 per cent difference in the cumulative distribution functions of flux ratios relative to CDM, with CDM predicting many more small ratios. Finally, we estimate that ~600 doubly imaged quasars will need to be observed in order to be able to unambiguously discern between CDM and the two WDM models studied here. Such sample sizes will be easily within reach of future large scale surveys such as Euclid. In preparation for this survey data we require discerning the scale of the uncertainties in modelling lens galaxies and their substructure in simulations, plus a strong understanding of the selection function of observed lensed quasars.

قيم البحث

اقرأ أيضاً

We perform a detailed forecast on how well a {sc Euclid}-like survey will be able to constrain dark energy and neutrino parameters from a combination of its cosmic shear power spectrum, galaxy power spectrum, and cluster mass function measurements. W e find that the combination of these three probes vastly improves the surveys potential to measure the time evolution of dark energy. In terms of a dark energy figure-of-merit defined as $(sigma(w_{mathrm p}) sigma(w_a))^{-1}$, we find a value of 690 for {sc Euclid}-like data combined with {sc Planck}-like measurements of the cosmic microwave background (CMB) anisotropies in a 10-dimensional cosmological parameter space, assuming a $Lambda$CDM fiducial cosmology. For the more commonly used 7-parameter model, we find a figure-of-merit of 1900 for the same data combination. We consider also the surveys potential to measure dark energy perturbations in models wherein the dark energy is parameterised as a fluid with a nonstandard non-adiabatic sound speed, and find that in an emph{optimistic} scenario in which $w_0$ deviates by as much as is currently observationally allowed from $-1$, models with $hat{c}_mathrm{s}^2 = 10^{-6}$ and $hat{c}_mathrm{s}^2 = 1$ can be distinguished at more than $2sigma$ significance. We emphasise that constraints on the dark energy sound speed from cluster measurements are strongly dependent on the modelling of the cluster mass function; significantly weaker sensitivities ensue if we modify our model to include fewer features of nonlinear dark energy clustering. Finally, we find that the sum of neutrino masses can be measured with a $1 sigma$ precision of 0.015~eV, (abridged)
We describe the methodology to include nonlinear evolution, including tidal effects, in the computation of subhalo distribution properties in both cold (CDM) and warm (WDM) dark matter universes. Using semi-analytic modeling, we include effects from dynamical friction, tidal stripping, and tidal heating, allowing us to dynamically evolve the subhalo distribution. We calibrate our nonlinear evolution scheme to the CDM subhalo mass function in the Aquarius N-body simulation, producing a subhalo mass function within the range of simulations. We find tidal effects to be the dominant mechanism of nonlinear evolution in the subhalo population. Finally, we compute the subhalo mass function for $m_chi=1.5$ keV WDM including the effects of nonlinear evolution, and compare radial number densities and mass density profiles of subhalos in CDM and WDM models. We show that all three signatures differ between the two dark matter models, suggesting that probes of substructure may be able to differentiate between them.
Cosmological perturbations of sufficiently long wavelength admit a fluid dynamic description. We consider modes with wavevectors below a scale $k_m$ for which the dynamics is only mildly non-linear. The leading effect of modes above that scale can be accounted for by effective non-equilibrium viscosity and pressure terms. For mildly non-linear scales, these mainly arise from momentum transport within the ideal and cold but inhomogeneous fluid, while momentum transport due to more microscopic degrees of freedom is suppressed. As a consequence, concrete expressions with no free parameters, except the matching scale $k_m$, can be derived from matching evolution equations to standard cosmological perturbation theory. Two-loop calculations of the matter power spectrum in the viscous theory lead to excellent agreement with $N$-body simulations up to scales $k=0.2 , h/$Mpc. The convergence properties in the ultraviolet are better than for standard perturbation theory and the results are robust with respect to variations of the matching scale.
143 - Andrew J. Benson 2012
We describe a methodology to accurately compute halo mass functions, progenitor mass functions, merger rates and merger trees in non-cold dark matter universes using a self-consistent treatment of the generalized extended Press-Schechter formalism. O ur approach permits rapid exploration of the subhalo population of galactic halos in dark matter models with a variety of different particle properties or universes with rolling, truncated, or more complicated power spectra. We make detailed comparisons of analytically derived mass functions and merger histories with recent warm dark matter cosmological N-body simulations, and find excellent agreement. We show that, once the accretion of smoothly distributed matter is accounted for, coarse-grained statistics such as the mass accretion history of halos can be almost indistinguishable between cold and warm dark matter cases. However, the halo mass function and progenitor mass functions differ significantly, with the warm dark matter cases being strongly suppressed below the free-streaming scale of the dark matter. We demonstrate the importance of using the correct solution for the excursion set barrier first-crossing distribution in warm dark matter - if the solution for a flat barrier is used instead the truncation of the halo mass function is much slower, leading to an overestimate of the number of low mass halos.
We use large-scale cosmological observations to place constraints on the dark-matter pressure, sound speed and viscosity, and infer a limit on the mass of warm-dark-matter particles. Measurements of the cosmic microwave background (CMB) anisotropies constrain the equation of state and sound speed of the dark matter at last scattering at the per mille level. Since the redshifting of collisionless particles universally implies that these quantities scale like $a^{-2}$ absent shell crossing, we infer that today $w_{rm (DM)}< 10^{-10.0}$, $c_{rm s,(DM)}^2 < 10^{-10.7}$ and $c_{rm vis, (DM)}^{2} < 10^{-10.3}$ at the $99%$ confidence level. This very general bound can be translated to model-dependent constraints on dark-matter models: for warm dark matter these constraints imply $m> 70$ eV, assuming it decoupled while relativistic around the same time as the neutrinos; for a cold relic, we show that $m>100$ eV. We separately constrain the properties of the DM fluid on linear scales at late times, and find upper bounds $c_{rm s, (DM)}^2<10^{-5.9}$, $c_{rm vis, (DM)}^{2} < 10^{-5.7}$, with no detection of non-dust properties for the DM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا