ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing exoplanet evaporation with multi-transiting systems

66   0   0.0 ( 0 )
 نشر من قبل James Owen
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The photoevaporation model is one of the leading explanations for the evolution of small, close-in planets and the origin of the radius-valley. However, without planet mass measurements, it is challenging to test the photoevaporation scenario. Even if masses are available for individual planets, the host stars unknown EUV/X-ray history makes it difficult to assess the role of photoevaporation. We show that systems with multiple transiting planets are the best in which to rigorously test the photoevaporation model. By scaling one planet to another in a multi-transiting system, the host stars uncertain EUV/X-ray history can be negated. By focusing on systems that contain planets that straddle the radius-valley, one can estimate the minimum-masses of planets above the radius-valley (and thus are assumed to have retained a voluminous hydrogen/helium envelope). This minimum-mass is estimated by assuming that the planet below the radius-valley entirely lost its initial hydrogen/helium envelope, then calculating how massive any planet above the valley needs to be to retain its envelope. We apply this method to 104 planets above the radius gap in 73 systems for which precise enough radii measurements are available. We find excellent agreement with the photoevaporation model. Only two planets (Kepler - 100c & 142c) appear to be inconsistent, suggesting they had a different formation history or followed a different evolutionary pathway to the bulk of the population. Our method can be used to identify TESS systems that warrant radial-velocity follow-up to further test the photoevaporation model.

قيم البحث

اقرأ أيضاً

We perform a detailed study of six transiting planetary systems with relatively bright stars close enough to affect observations of these systems. Light curves are analysed taking into account the contaminating light and its uncertainty. We present a nd apply a method to correct the velocity amplitudes of the host stars for the presence of contaminating light. We determine the physical properties of six systems (WASP-20, WASP-70, WASP-8, WASP-76, WASP-2 and WASP-131) accounting for contaminating light. In the case of WASP-20 the measured physical properties are very different for the three scenarios considered (ignoring binarity, planet transits brighter star, and planet transits fainter star). In the other five cases our results are very similar to those obtained neglecting contaminating light. We use our results to determine the mean correction factors to planet radius, $langle X_Rrangle$, mass, $langle X_Mrangle$, and density, $langle X_rhorangle$, caused by nearby objects. We find $langle X_Rrangle=1.009pm0.045$, which is smaller than literature values because we were able to reject the possibility that the planet orbits the fainter star in all but one case. We find $langle X_Mrangle=1.031pm0.019$, which is larger than $langle X_Rrangle$ because of the strength of the effect of contaminating light on the radial velocity measurements of the host star. We find $langle X_rhorangle=0.995pm 0.046$: the small size of this correction is due to two effects: the corrections on planet radius and mass partially cancel; and some nearby stars are close enough to contaminate the light curves of the system but not radial velocities of the host star. We conclude that binarity of planet host stars is important for the small number of transiting hot Jupiters with a very bright and close nearby star, but it has only a small effect on population-level studies of these objects.
The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its two-year mission, TESS will employ four wide-field optical CCD cameras to monitor at least 200,000 main-sequence dwarf stars with I = 4-13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from one month to one year, depending mainly on the stars ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10-100 times brighter than those surveyed by the pioneering Kepler mission. This will make TESS planets easier to characterize with follow-up observations. TESS is expected to find more than a thousand planets smaller than Neptune, including dozens that are comparable in size to the Earth. Public data releases will occur every four months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest stars hosting transiting planets, which will endure as highly favorable targets for detailed investigations.
We report the discovery of WASP-13b, a low-mass $ M_p = 0.46 ^{+ 0.06}_{- 0.05} M_J$ transiting exoplanet with an orbital period of $4.35298 pm 0.00004$ days. The transit has a depth of 9 mmag, and although our follow-up photometry does not allow us to constrain the impact parameter well ($0 < b < 0.46$), with radius in the range $R_p sim 1.06 - 1.21 R_J$ the location of WASP-13b in the mass-radius plane is nevertheless consistent with H/He-dominated, irradiated, low core mass and core-free theoretical models. The G1V host star is similar to the Sun in mass (M$_{*} = 1.03^{+0.11}_ {- 0.09} M_{odot}$) and metallicity ([M/H]=$0.0pm0.2$), but is possibly older ($8.5^{+ 5.5}_{- 4.9}$ Gyr).
High-energy irradiation is a driver for atmospheric evaporation and mass loss in exoplanets. This work is based on data from eROSITA, the soft X-ray instrument aboard SRG (Spectrum Roentgen Gamma) mission, as well as archival data from other missions , we aim to characterise the high-energy environment of known exoplanets and estimate their mass loss rates. We use X-ray source catalogues from eROSITA, XMM-Newton, Chandra and ROSAT to derive X-ray luminosities of exoplanet host stars in the 0.2-2 keV energy band with an underlying coronal, i.e. optically thin thermal spectrum. We present a catalogue of stellar X-ray and EUV luminosities, exoplanetary X-ray and EUV irradiation fluxes and estimated mass loss rates for a total of 287 exoplanets, 96 among them being characterised for the first time from new eROSITA detections. We identify 14 first time X-ray detections of transiting exoplanets that are subject to irradiation levels known to cause observable evaporation signatures in other exoplanets, which makes them suitable targets for follow-up observations.
We explore how well James Webb Space Telescope (JWST) spectra will likely constrain bulk atmospheric properties of transiting exoplanets. We start by modeling the atmospheres of archetypal hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-E arth planets with clear, cloudy, or high mean molecular weight atmospheres. Next we simulate the $lambda = 1 - 11$ $mu$m transmission and emission spectra of these systems for several JWST instrument modes for single transit and eclipse events. We then perform retrievals to determine how well temperatures and molecular mixing ratios (CH$_4$, CO, CO$_2$, H$_2$O, NH$_3$) can be constrained. We find that $lambda = 1 - 2.5$ $mu$m transmission spectra will often constrain the major molecular constituents of clear solar composition atmospheres well. Cloudy or high mean molecular weight atmospheres will often require full $1 - 11$ $mu$m spectra for good constraints, and emission data may be more useful in cases of sufficiently high $F_p$ and high $F_p/F_*$. Strong temperature
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا