ترغب بنشر مسار تعليمي؟ اضغط هنا

Leveraging Procedural Generation to Benchmark Reinforcement Learning

156   0   0.0 ( 0 )
 نشر من قبل Karl Cobbe
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce Procgen Benchmark, a suite of 16 procedurally generated game-like environments designed to benchmark both sample efficiency and generalization in reinforcement learning. We believe that the community will benefit from increased access to high quality training environments, and we provide detailed experimental protocols for using this benchmark. We empirically demonstrate that diverse environment distributions are essential to adequately train and evaluate RL agents, thereby motivating the extensive use of procedural content generation. We then use this benchmark to investigate the effects of scaling model size, finding that larger models significantly improve both sample efficiency and generalization.



قيم البحث

اقرأ أيضاً

In many real-world scenarios, an autonomous agent often encounters various tasks within a single complex environment. We propose to build a graph abstraction over the environment structure to accelerate the learning of these tasks. Here, nodes are im portant points of interest (pivotal states) and edges represent feasible traversals between them. Our approach has two stages. First, we jointly train a latent pivotal state model and a curiosity-driven goal-conditioned policy in a task-agnostic manner. Second, provided with the information from the world graph, a high-level Manager quickly finds solution to new tasks and expresses subgoals in reference to pivotal states to a low-level Worker. The Worker can then also leverage the graph to easily traverse to the pivotal states of interest, even across long distance, and explore non-locally. We perform a thorough ablation study to evaluate our approach on a suite of challenging maze tasks, demonstrating significant advantages from the proposed framework over baselines that lack world graph knowledge in terms of performance and efficiency.
133 - Chenjun Xiao , Yifan Wu , Chen Ma 2019
Despite its potential to improve sample complexity versus model-free approaches, model-based reinforcement learning can fail catastrophically if the model is inaccurate. An algorithm should ideally be able to trust an imperfect model over a reasonabl y long planning horizon, and only rely on model-free updates when the model errors get infeasibly large. In this paper, we investigate techniques for choosing the planning horizon on a state-dependent basis, where a states planning horizon is determined by the maximum cumulative model error around that state. We demonstrate that these state-dependent model errors can be learned with Temporal Difference methods, based on a novel approach of temporally decomposing the cumulative model errors. Experimental results show that the proposed method can successfully adapt the planning horizon to account for state-dependent model accuracy, significantly improving the efficiency of policy learning compared to model-based and model-free baselines.
Researchers have proposed hardware, software, and algorithmic optimizations to improve the computational performance of deep learning. While some of these optimizations perform the same operations faster (e.g., increasing GPU clock speed), many other s modify the semantics of the training procedure (e.g., reduced precision), and can impact the final models accuracy on unseen data. Due to a lack of standard evaluation criteria that considers these trade-offs, it is difficult to directly compare these optimizations. To address this problem, we recently introduced DAWNBench, a benchmark competition focused on end-to-end training time to achieve near-state-of-the-art accuracy on an unseen dataset---a combined metric called time-to-accuracy (TTA). In this work, we analyze the entries from DAWNBench, which received optimized submissions from multiple industrial groups, to investigate the behavior of TTA as a metric as well as trends in the best-performing entries. We show that TTA has a low coefficient of variation and that models optimized for TTA generalize nearly as well as those trained using standard methods. Additionally, even though DAWNBench entries were able to train ImageNet models in under 3 minutes, we find they still underutilize hardware capabilities such as Tensor Cores. Furthermore, we find that distributed entries can spend more than half of their time on communication. We show similar findings with entries to the MLPERF v0.5 benchmark.
Procedural content generation in video games has a long history. Existing procedural content generation methods, such as search-based, solver-based, rule-based and grammar-based methods have been applied to various content types such as levels, maps, character models, and textures. A research field centered on content generation in games has existed for more than a decade. More recently, deep learning has powered a remarkable range of inventions in content production, which are applicable to games. While some cutting-edge deep learning methods are applied on their own, others are applied in combination with more traditional methods, or in an interactive setting. This article surveys the various deep learning methods that have been applied to generate game content directly or indirectly, discusses deep learning methods that could be used for content generation purposes but are rarely used today, and envisages some limitations and potential future directions of deep learning for procedural content generation.
This paper presents a novel neural network training approach for faster convergence and better generalization abilities in deep reinforcement learning. Particularly, we focus on the enhancement of training and evaluation performance in reinforcement learning algorithms by systematically reducing gradients variance and thereby providing a more targeted learning process. The proposed method which we term as Gradient Monitoring(GM), is an approach to steer the learning in the weight parameters of a neural network based on the dynamic development and feedback from the training process itself. We propose different variants of the GM methodology which have been proven to increase the underlying performance of the model. The one of the proposed variant, Momentum with Gradient Monitoring (M-WGM), allows for a continuous adjustment of the quantum of back-propagated gradients in the network based on certain learning parameters. We further enhance the method with Adaptive Momentum with Gradient Monitoring (AM-WGM) method which allows for automatic adjustment between focused learning of certain weights versus a more dispersed learning depending on the feedback from the rewards collected. As a by-product, it also allows for automatic derivation of the required deep network sizes during training as the algorithm automatically freezes trained weights. The approach is applied to two discrete (Multi-Robot Co-ordination problem and Atari games) and one continuous control task (MuJoCo) using Advantage Actor-Critic (A2C) and Proximal Policy Optimization (PPO) respectively. The results obtained particularly underline the applicability and performance improvements of the methods in terms of generalization capability.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا