ﻻ يوجد ملخص باللغة العربية
The description of physical processes with many-particle systems is a key approach to the modeling of countless physical systems. In storage rings, where ultrarelativistic particles are agglomerated in dense bunches, the measurement of their phase-space distribution (PSD) is of paramount importance: at any time the PSD not only determines the complete space-time evolution but also provides fundamental performance characteristics for storage ring operation. Here, we demonstrate a non-destructive tomographic imaging technique for the 2D longitudinal PSD of ultrarelativistic electron bunches. For this purpose, we utilize a unique setup, which streams turn-by-turn near-field measurements of bunch profiles at MHz repetition rates. To demonstrate the feasibility of our method, we induce a non-equilibrium state and show, that the PSD microstructuring as well as the PSD dynamics can be observed in great detail with an unprecedented resolution. Our approach offers a pathway to control ultrashort bunches and supports, as one example, the development of compact accelerators with low energy footprints.
FAST linear accelerator has been commissioned in 2017. Experimental program of the facility requires high quality beams with well-defined properties. Solenoidal fields at photoinjector, laser spot shape, space charge forces and other effects can dist
Highly excited nuclear matter created in ultrarelativistic heavy-ion collisions possibly reaches the phase of quark deconfinement. It quickly cools down and hadronises. We explain that the process of hadronisation may likely be connected with disinte
We demonstrate a non-invasive time-sorting method for ultrafast electron diffraction (UED) experiments with radio-frequency (rf) compressed electron beams. We show that electron beam energy and arrival time at the sample after rf compression are stro
Femtosecond light-induced phase transitions between different macroscopic orders provide the possibility to tune the functional properties of condensed matter on ultrafast timescales. In first-order phase transitions, transient non-equilibrium phases
Temporally-modulated electron beams have a wide array of applications ranging from the generation of coherently-enhanced electromagnetic radiation to the resonant excitation of electromagnetic wakefields in advanced-accelerator concepts. Likewise pro