ترغب بنشر مسار تعليمي؟ اضغط هنا

Beam Phase Space Tomography at FAST Electron Linac at Fermilab

120   0   0.0 ( 0 )
 نشر من قبل Romanov, Aleksandr Leonidovich
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Romanov




اسأل ChatGPT حول البحث

FAST linear accelerator has been commissioned in 2017. Experimental program of the facility requires high quality beams with well-defined properties. Solenoidal fields at photoinjector, laser spot shape, space charge forces and other effects can distort beam distribution and introduce coupling. This work presents results of a beam phase space tomography for a coupled 4D case. Beam was rotated in two planes with seven quads by 180 degrees and images from YaG screen were used to perform SVD based reconstruction of the beam distribution.



قيم البحث

اقرأ أيضاً

We report results of the beam commissioning and first operation of the 1.3 GHz superconducting RF electron linear accelerator at Fermilab Accelerator Science and Technology (FAST) facility. Construction of the linac was completed and the machine was commissioned with beam in 2017. The maximum total beam energy of about 300 MeV was achieved with the record energy gain of 250 MeV in the ILC-type SRF cryomodule. The photoinjector was tuned to produce trains of 200 pC bunches with a frequency of 3 MHz at a repetition rate of 1 Hz. This report describes the aspects of machine commissioning such as tuning of the SRF cryomodule and beam optics optimization. We also present highlights of an experimental program carried out parasitically during the two-month run, including studies of wake-fields, and advanced beam phase space manipulation.
128 - D. Stratakis 2017
In the next decade the Fermilab Muon Campus will host two world class experiments dedicated to the search for signals of new physics. The Muon g-2 experiment will determine with unprecedented precision the anomalous magnetic moment of the muon. The M u2e experiment will improve by four orders of magnitude the sensitivity on the search for the as-yet unobserved Charged Lepton Flavor Violation process of a neutrinoless conversion of a muon to an electron. Maintaining and preserving a high density of particles in phase-space is an important requirement for both experiments. This paper presents a new experimental method for mapping the transverse phase space of a particle beam based on tomographic principles. We simulate our technique using a GEANT4 based tracking code, to ascertain accuracy of the reconstruction. Then we apply the technique to a series of proof-of-principle simulation tests to study injection and transport of muon beams for the Fermilab Muon Campus.
77 - C. M. Bhat , S. Bhat 2017
Increasing proton beam power on neutrino production targets is one of the major goals of the Fermilab long term accelerator programs. In this effort, the Fermilab 8 GeV Booster synchrotron plays a critical role for at least the next two decades. Ther efore, understanding the Booster in great detail is important as we continue to improve its performance. For example, it is important to know accurately the available RF power in the Booster by carrying out beam-based measurements in order to specify the needed upgrades to the Booster RF system. Since the Booster magnetic field is changing continuously measuring/calibrating the RF voltage is not a trivial task. Here, we present a beam based method for the RF voltage measurements. Data analysis is carried out using computer programs developed in Python and MATLAB. The method presented here is applicable to any RCS which do not have flat-bottom and flat-top in the acceleration magnetic ramps. We have also carried out longitudinal beam tomography at injection and extraction energies with the data used for RF voltage measurements. Beam based RF voltage measurements and beam tomography were never done before for the Fermilab Booster. The results from these investigations will be very useful in future intensity upgrades.
122 - Sacha E. Kopp 2005
The Neutrinos at the Main Injector (NuMI) facility at Fermilab began operations in late 2004. NuMI will deliver an intense muon neutrino beam of variable energy (2-20 GeV) directed into the Earth at 58 mrad for short (~1km) and long (~700-900 km) bas eline experiments. Several aspects of the design and results from early commissioning runs are reviewed.
105 - L. Lari C.n Baffes 2018
PIP-II is the Fermilabs flagship project for providing powerful, high-intensity proton beams to the laboratorys experiments. The heart of PIP-II is an 800-MeV superconducting linac accelerator. It will be located in a new tunnel with new service buil dings and connected to the present Booster through a new transfer line. To support the design of civil engineering and mechanical integration, this paper provides preliminary estimation of radiation level in the gallery at an operational beam loss limit of 0.1 W/m, by means of Monte Carlo calculations with FLUKA and MARS15 codes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا