ﻻ يوجد ملخص باللغة العربية
We consider counterterms for odd dimensional holographic CFTs. These counterterms are derived by demanding cut-off independence of the CFT partition function on $S^d$ and $S^1 times S^{d-1}$. The same choice of counterterms leads to a cut-off independent Schwarzschild black hole entropy. When treated as independent actions, these counterterm actions resemble critical theories of gravity, i.e., higher curvature gravity theories where the additional massive spin-2 modes become massless. Equivalently, in the context of AdS/CFT, these are theories where at least one of the central charges associated with the trace anomaly vanishes. Connections between these theories and logarithmic CFTs are discussed. For a specific choice of parameters, the theories arising from counterterms are non-dynamical and resemble a DBI generalization of gravity. For even dimensional CFTs, analogous counterterms cancel log-independent cut-off dependence.
We derived local boundary counterterms in massive gravity theory with a negative cosmological constant in four dimensions. With these counterterms at hand we analyzed the properties of the boundary field theory in the context of AdS/CFT duality by ca
We show that the Kounterterms for pure AdS gravity in arbitrary even dimensions coincide with the boundary counterterms obtained through holographic renormalization if and only if the boundary Weyl tensor vanishes. In particular, the Kounterterms lea
We study codimension-even conical defects that contain a deficit solid angle around each point along the defect. We show that they lead to a delta function contribution to the Lovelock scalar and we compute the contribution by two methods. We then sh
This thesis is dedicated to the study of quasi-local boundary in quantum gravity in the 3D space-time case. This research takes root in the holographic principle, which conjectures that the geometry and the dynamic of a space-time region can be entir
We employ gauge-gravity duality to study the backreaction effect of 4-dimensional large-$N$ quantum field theories on constant-curvature backgrounds, and in particular de Sitter space-time. The field theories considered are holographic QFTs, dual to