ﻻ يوجد ملخص باللغة العربية
Lattice QCD in a dual formulation with staggered fermions is well established in the strong coupling limit and allows to perform Monte Carlo simulations at finite baryon chemical potential. We have recently addressed the dependence of the nuclear critical end point as a function of the quark mass $am_q$, and separately as a function of the lattice gauge coupling $beta$ in the chiral limit. Here we proceed to determine the dependence of the nuclear transition on both, $am_q$ and $beta$, on isotropic lattices and attempt to pinpoint the critical end point for various $beta$ where the sign problem is still manageable.
We present results showing that the strong coupling constant measured in two-flavor full QCD with dynamical Kogut-Susskind quarks at $beta=5.7$ exhibit a 15% increase due to sea quarks over that for quenched QCD at the scale $muapprox 7$GeV . (talk at lattice93)
We present an updated analysis of the quark mass dependence of the nucleon mass and nucleon axial-vector coupling g_A, comparing different formulations of SU(2) Baryon Chiral Effective Field Theory, with and without explicit delta (1232) degrees of f
We summarize the results recently reported in Ref.[1] [A. Deuzeman, M.P. Lombardo, T. Nunes da Silva and E. Pallante,The bulk transition of QCD with twelve flavors and the role of improvement] for the SU(3) gauge theory with Nf=12 fundamental flavors
We present the computation of invariants that arise in the strong coupling expansion of lattice QCD. These invariants are needed for Monte Carlo simulations of Lattice QCD with staggered fermions in a dual, color singlet representation. This formulat
We investigate chiral symmetry restoration in finite spatial volume and at finite temperature by calculating the dependence of the chiral phase transition temperature on the size of the spatial volume and the current-quark mass for the quark-meson mo