ﻻ يوجد ملخص باللغة العربية
In this paper, we present a technique that improves the process of training an agent (using RL) for instruction following. We develop a training curriculum that uses a nominal number of expert demonstrations and trains the agent in a manner that draws parallels from one of the ways in which humans learn to perform complex tasks, i.e by starting from the goal and working backwards. We test our method on the BabyAI platform and show an improvement in sample efficiency for some of its tasks compared to a PPO (proximal policy optimization) baseline.
A reinforcement learning agent that needs to pursue different goals across episodes requires a goal-conditional policy. In addition to their potential to generalize desirable behavior to unseen goals, such policies may also enable higher-level planni
We propose a new way of deriving policy gradient updates for reinforcement learning. Our technique, based on Fourier analysis, recasts integrals that arise with expected policy gradients as convolutions and turns them into multiplications. The obtain
We propose FACtored Multi-Agent Centralised policy gradients (FACMAC), a new method for cooperative multi-agent reinforcement learning in both discrete and continuous action spaces. Like MADDPG, a popular multi-agent actor-critic method, our approach
Multi-agent policy gradient (MAPG) methods recently witness vigorous progress. However, there is a significant performance discrepancy between MAPG methods and state-of-the-art multi-agent value-based approaches. In this paper, we investigate causes
This paper proposes a definition of system health in the context of multiple agents optimizing a joint reward function. We use this definition as a credit assignment term in a policy gradient algorithm to distinguish the contributions of individual a