ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for New Physics with $bbar{b} ell^+ ell^-$ Contact Interactions

118   0   0.0 ( 0 )
 نشر من قبل Yoav Afik
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the impact of contact interactions involving two leptons (electrons or muons) and two $b$-quarks ($b bar{b} ell^+ ell^-$) on the high-mass di-lepton region at the LHC. We consider different selections of $b$-tagged jet multiplicities in the di-lepton final states: inclusive (no selection), 0, 1 and 2 $b$-tagged jets, and show that the single $b$-jet selection significantly improves the sensitivity to New Physics (NP) in the form of the $b bar{b} ell^+ ell^-$ contact term. We obtain a better sensitivity compared to the currently existing searches of NP in the di-lepton inclusive channel. In particular, the expected limits go beyond competitive bounds set by LEP (for electrons) on the scale of NP, $Lambda$, by a factor of $1.2-3.1$, depending on the chirality structure of the operator. In addition, the expected limits on $Lambda$, set by using a non-resonant LHC di-lepton inclusive search, are expected to be improved by a factor of $1.3-1.4$ for both electrons and muons.



قيم البحث

اقرأ أيضاً

132 - Simone Bifani 2017
Rare decays of heavy-flavoured particles provide an ideal laboratory to look for deviations from the Standard Model, and explore energy regimes beyond the LHC reach. Decays proceeding via electroweak penguin diagrams are excellent probes to search fo r New Physics, and $b to s ell^{+}ell^{-}$ processes are particularly interesting since they give access to many observables such as branching fractions, asymmetries and angular observables. Recent results from the LHCb experiment are reviewed.
Recent results obtained in experiments at the LHC in the field of rare $b$-hadron decays are reviewed in this contribution, with a focus on $bto qellell$ processes. A general status is presented as well as recently completed measurements.
We present the prospects of an angular analysis of the $Lambda_b to Lambda(1520)ell^+ell^-$ decay. Using the expected yield in the current dataset collected at the LHCb experiment, as well as the foreseen ones after the LHCb upgrades, sensitivity stu dies are presented to determine the experimental precision on angular observables related to the lepton distribution and their potential to identify New Physics. The forward-backward lepton asymmetry at low dilepton invariant mass is particularly promising. NP scenarios favoured by the current anomalies in $bto sell^+ell^-$ decays can be distinguished from the SM case with the data collected between the Run 3 and the Upgrade 2 of the LHCb experiment.
We present the measurement of the first to fourth order moments of the four-momentum transfer squared, $q^2$, of inclusive $B rightarrow X_c ell^+ u_{ell}$ decays using the full Belle data set of 711 $mathrm{fb}^{-1}$ of integrated luminosity at the $Upsilon(4S)$ resonance where $ell = e, mu$. The determination of these moments and their systematic uncertainties open new pathways to determine the absolute value of the CKM matrix element $V_{cb}$ using a reduced set of matrix elements of the heavy quark expansion. In order to identify and reconstruct the $X_c$ system, we reconstruct one of the two $B$-mesons using machine learning techniques in fully hadronic decay modes. The moments are measured with progressively increasing threshold selections on $q^2$ starting with a lower value of 3.0 $mathrm{GeV}^2$ in steps of 0.5 $mathrm{GeV}^2$ up to a value of 10.0 $mathrm{GeV}^2$. The measured moments are further unfolded, correcting for reconstruction and selection effects as well as QED final state radiation. We report the moments separately for electron and muon final states and observe no lepton flavor universality violating effects.
A measurement of the ratio of branching fractions of the decays $B^+to K^+mu^+mu^-$ and $B^+to K^+e^+e^-$ is presented. The proton-proton collision data used correspond to an integrated luminosity of $5.0,$fb$^{-1}$ recorded with the LHCb experiment at centre-of-mass energies of $7$, $8$ and $13,$TeV. For the dilepton mass-squared range $1.1 < q^2 < 6.0,$GeV$^2!/c^4$ the ratio of branching fractions is measured to be $R_K = {0.846,^{+,0.060}_{-,0.054},^{+,0.016}_{-,0.014}}$, where the first uncertainty is statistical and the second systematic. This is the most precise measurement of $R_K$ to date and is compatible with the Standard Model at the level of 2.5 standard deviations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا