ترغب بنشر مسار تعليمي؟ اضغط هنا

Not All Attention Is Needed: Gated Attention Network for Sequence Data

111   0   0.0 ( 0 )
 نشر من قبل Lanqing Xue
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Although deep neural networks generally have fixed network structures, the concept of dynamic mechanism has drawn more and more attention in recent years. Attention mechanisms compute input-dependent dynamic attention weights for aggregating a sequence of hidden states. Dynamic network configuration in convolutional neural networks (CNNs) selectively activates only part of the network at a time for different inputs. In this paper, we combine the two dynamic mechanisms for text classification tasks. Traditional attention mechanisms attend to the whole sequence of hidden states for an input sentence, while in most cases not all attention is needed especially for long sequences. We propose a novel method called Gated Attention Network (GA-Net) to dynamically select a subset of elements to attend to using an auxiliary network, and compute attention weights to aggregate the selected elements. It avoids a significant amount of unnecessary computation on unattended elements, and allows the model to pay attention to important parts of the sequence. Experiments in various datasets show that the proposed method achieves better performance compared with all baseline models with global or local attention while requiring less computation and achieving better interpretability. It is also promising to extend the idea to more complex attention-based models, such as transformers and seq-to-seq models.



قيم البحث

اقرأ أيضاً

Attention mechanisms play a central role in NLP systems, especially within recurrent neural network (RNN) models. Recently, there has been increasing interest in whether or not the intermediate representations offered by these modules may be used to explain the reasoning for a models prediction, and consequently reach insights regarding the models decision-making process. A recent paper claims that `Attention is not Explanation (Jain and Wallace, 2019). We challenge many of the assumptions underlying this work, arguing that such a claim depends on ones definition of explanation, and that testing it needs to take into account all elements of the model, using a rigorous experimental design. We propose four alternative tests to determine when/whether attention can be used as explanation: a simple uniform-weights baseline; a variance calibration based on multiple random seed runs; a diagnostic framework using frozen weights from pretrained models; and an end-to-end adversarial attention training protocol. Each allows for meaningful interpretation of attention mechanisms in RNN models. We show that even when reliable adversarial distributions can be found, they dont perform well on the simple diagnostic, indicating that prior work does not disprove the usefulness of attention mechanisms for explainability.
We propose Differentiable Window, a new neural module and general purpose component for dynamic window selection. While universally applicable, we demonstrate a compelling use case of utilizing Differentiable Window to improve standard attention modu les by enabling more focused attentions over the input regions. We propose two variants of Differentiable Window, and integrate them within the Transformer architecture in two novel ways. We evaluate our proposed approach on a myriad of NLP tasks, including machine translation, sentiment analysis, subject-verb agreement and language modeling. Our experimental results demonstrate consistent and sizable improvements across all tasks.
Recent studies have shown that neural models can achieve high performance on several sequence labelling/tagging problems without the explicit use of linguistic features such as part-of-speech (POS) tags. These models are trained only using the charac ter-level and the word embedding vectors as inputs. Others have shown that linguistic features can improve the performance of neural models on tasks such as chunking and named entity recognition (NER). However, the change in performance depends on the degree of semantic relatedness between the linguistic features and the target task; in some instances, linguistic features can have a negative impact on performance. This paper presents an approach to jointly learn these linguistic features along with the target sequence labelling tasks with a new multi-task learning (MTL) framework called Gated Tasks Interaction (GTI) network for solving multiple sequence tagging tasks. The GTI network exploits the relations between the multiple tasks via neural gate modules. These gate modules control the flow of information between the different tasks. Experiments on benchmark datasets for chunking and NER show that our framework outperforms other competitive baselines trained with and without external training resources.
Attention-based neural networks have achieved state-of-the-art results on a wide range of tasks. Most such models use deterministic attention while stochastic attention is less explored due to the optimization difficulties or complicated model design . This paper introduces Bayesian attention belief networks, which construct a decoder network by modeling unnormalized attention weights with a hierarchy of gamma distributions, and an encoder network by stacking Weibull distributions with a deterministic-upward-stochastic-downward structure to approximate the posterior. The resulting auto-encoding networks can be optimized in a differentiable way with a variational lower bound. It is simple to convert any models with deterministic attention, including pretrained ones, to the proposed Bayesian attention belief networks. On a variety of language understanding tasks, we show that our method outperforms deterministic attention and state-of-the-art stochastic attention in accuracy, uncertainty estimation, generalization across domains, and robustness to adversarial attacks. We further demonstrate the general applicability of our method on neural machine translation and visual question answering, showing great potential of incorporating our method into various attention-related tasks.
We introduce Performers, Transformer architectures which can estimate regular (softmax) full-rank-attention Transformers with provable accuracy, but using only linear (as opposed to quadratic) space and time complexity, without relying on any priors such as sparsity or low-rankness. To approximate softmax attention-kernels, Performers use a novel Fast Attention Via positive Orthogonal Random features approach (FAVOR+), which may be of independent interest for scalable kernel methods. FAVOR+ can be also used to efficiently model kernelizable attention mechanisms beyond softmax. This representational power is crucial to accurately compare softmax with other kernels for the first time on large-scale tasks, beyond the reach of regular Transformers, and investigate optimal attention-kernels. Performers are linear architectures fully compatible with regular Transformers and with strong theoretical guarantees: unbiased or nearly-unbiased estimation of the attention matrix, uniform convergence and low estimation variance. We tested Performers on a rich set of tasks stretching from pixel-prediction through text models to protein sequence modeling. We demonstrate competitive results with other examined efficient sparse and dense attention methods, showcasing effectiveness of the novel attention-learning paradigm leveraged by Performers.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا