ﻻ يوجد ملخص باللغة العربية
Training a neural network is synonymous with learning the values of the weights. By contrast, we demonstrate that randomly weighted neural networks contain subnetworks which achieve impressive performance without ever training the weight values. Hidden in a randomly weighted Wide ResNet-50 we show that there is a subnetwork (with random weights) that is smaller than, but matches the performance of a ResNet-34 trained on ImageNet. Not only do these untrained subnetworks exist, but we provide an algorithm to effectively find them. We empirically show that as randomly weighted neural networks with fixed weights grow wider and deeper, an untrained subnetwork approaches a network with learned weights in accuracy. Our code and pretrained models are available at https://github.com/allenai/hidden-networks.
We demonstrate that, hidden within one-layer randomly weighted neural networks, there exist subnetworks that can achieve impressive performance, without ever modifying the weight initializations, on machine translation tasks. To find subnetworks for
Recently, Frankle & Carbin (2019) demonstrated that randomly-initialized dense networks contain subnetworks that once found can be trained to reach test accuracy comparable to the trained dense network. However, finding these high performing trainabl
In this paper, we present a novel approach that uses deep learning techniques for colorizing grayscale images. By utilizing a pre-trained convolutional neural network, which is originally designed for image classification, we are able to separate con
This paper introduces the Deep Recurrent Attentive Writer (DRAW) neural network architecture for image generation. DRAW networks combine a novel spatial attention mechanism that mimics the foveation of the human eye, with a sequential variational aut
Deep neural networks excel at finding hierarchical representations that solve complex tasks over large data sets. How can we humans understand these learned representations? In this work, we present network dissection, an analytic framework to system