ترغب بنشر مسار تعليمي؟ اضغط هنا

Whats Hidden in a Randomly Weighted Neural Network?

66   0   0.0 ( 0 )
 نشر من قبل Vivek Ramanujan
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Training a neural network is synonymous with learning the values of the weights. By contrast, we demonstrate that randomly weighted neural networks contain subnetworks which achieve impressive performance without ever training the weight values. Hidden in a randomly weighted Wide ResNet-50 we show that there is a subnetwork (with random weights) that is smaller than, but matches the performance of a ResNet-34 trained on ImageNet. Not only do these untrained subnetworks exist, but we provide an algorithm to effectively find them. We empirically show that as randomly weighted neural networks with fixed weights grow wider and deeper, an untrained subnetwork approaches a network with learned weights in accuracy. Our code and pretrained models are available at https://github.com/allenai/hidden-networks.



قيم البحث

اقرأ أيضاً

We demonstrate that, hidden within one-layer randomly weighted neural networks, there exist subnetworks that can achieve impressive performance, without ever modifying the weight initializations, on machine translation tasks. To find subnetworks for one-layer randomly weighted neural networks, we apply different binary masks to the same weight matrix to generate different layers. Hidden within a one-layer randomly weighted Transformer, we find that subnetworks that can achieve 29.45/17.29 BLEU on IWSLT14/WMT14. Using a fixed pre-trained embedding layer, the previously found subnetworks are smaller than, but can match 98%/92% (34.14/25.24 BLEU) of the performance of, a trained Transformer small/base on IWSLT14/WMT14. Furthermore, we demonstrate the effectiveness of larger and deeper transformers in this setting, as well as the impact of different initialization methods. We released the source code at https://github.com/sIncerass/one_layer_lottery_ticket.
Recently, Frankle & Carbin (2019) demonstrated that randomly-initialized dense networks contain subnetworks that once found can be trained to reach test accuracy comparable to the trained dense network. However, finding these high performing trainabl e subnetworks is expensive, requiring iterative process of training and pruning weights. In this paper, we propose (and prove) a stronger Multi-Prize Lottery Ticket Hypothesis: A sufficiently over-parameterized neural network with random weights contains several subnetworks (winning tickets) that (a) have comparable accuracy to a dense target network with learned weights (prize 1), (b) do not require any further training to achieve prize 1 (prize 2), and (c) is robust to extreme forms of quantization (i.e., binary weights and/or activation) (prize 3). This provides a new paradigm for learning compact yet highly accurate binary neural networks simply by pruning and quantizing randomly weighted full precision neural networks. We also propose an algorithm for finding multi-prize tickets (MPTs) and test it by performing a series of experiments on CIFAR-10 and ImageNet datasets. Empirical results indicate that as models grow deeper and wider, multi-prize tickets start to reach similar (and sometimes even higher) test accuracy compared to their significantly larger and full-precision counterparts that have been weight-trained. Without ever updating the weight values, our MPTs-1/32 not only set new binary weight network state-of-the-art (SOTA) Top-1 accuracy -- 94.8% on CIFAR-10 and 74.03% on ImageNet -- but also outperform their full-precision counterparts by 1.78% and 0.76%, respectively. Further, our MPT-1/1 achieves SOTA Top-1 accuracy (91.9%) for binary neural networks on CIFAR-10. Code and pre-trained models are available at: https://github.com/chrundle/biprop.
158 - Tung Nguyen , Kazuki Mori , 2016
In this paper, we present a novel approach that uses deep learning techniques for colorizing grayscale images. By utilizing a pre-trained convolutional neural network, which is originally designed for image classification, we are able to separate con tent and style of different images and recombine them into a single image. We then propose a method that can add colors to a grayscale image by combining its content with style of a color image having semantic similarity with the grayscale one. As an application, to our knowledge the first of its kind, we use the proposed method to colorize images of ukiyo-e a genre of Japanese painting?and obtain interesting results, showing the potential of this method in the growing field of computer assisted art.
This paper introduces the Deep Recurrent Attentive Writer (DRAW) neural network architecture for image generation. DRAW networks combine a novel spatial attention mechanism that mimics the foveation of the human eye, with a sequential variational aut o-encoding framework that allows for the iterative construction of complex images. The system substantially improves on the state of the art for generative models on MNIST, and, when trained on the Street View House Numbers dataset, it generates images that cannot be distinguished from real data with the naked eye.
Deep neural networks excel at finding hierarchical representations that solve complex tasks over large data sets. How can we humans understand these learned representations? In this work, we present network dissection, an analytic framework to system atically identify the semantics of individual hidden units within image classification and image generation networks. First, we analyze a convolutional neural network (CNN) trained on scene classification and discover units that match a diverse set of object concepts. We find evidence that the network has learned many object classes that play crucial roles in classifying scene classes. Second, we use a similar analytic method to analyze a generative adversarial network (GAN) model trained to generate scenes. By analyzing changes made when small sets of units are activated or deactivated, we find that objects can be added and removed from the output scenes while adapting to the context. Finally, we apply our analytic framework to understanding adversarial attacks and to semantic image editing.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا