ترغب بنشر مسار تعليمي؟ اضغط هنا

The SOPHIE search for northern extrasolar planets. XVI. HD 158259: A compact planetary system in a near-3:2 mean motion resonance chain

108   0   0.0 ( 0 )
 نشر من قبل Nathan Hara
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Since 2011, the SOPHIE spectrograph has been used to search for Neptunes and super-Earths in the Northern Hemisphere. As part of this observational program, 290 radial velocity measurements of the 6.4 V magnitude star HD 158259 were obtained. Additionally, TESS photometric measurements of this target are available. We present an analysis of the SOPHIE data and compare our results with the output of the TESS pipeline. The radial velocity data, ancillary spectroscopic indices, and ground-based photometric measurements were analyzed with classical and $ell_1$ periodograms. The stellar activity was modeled as a correlated Gaussian noise and its impact on the planet detection was measured with a new technique. The SOPHIE data support the detection of five planets, each with $m sin i approx 6 M_oplus$, orbiting HD 158259 in 3.4, 5.2, 7.9, 12, and 17.4 days. Though a planetary origin is strongly favored, the 17.4 d signal is classified as a planet candidate due to a slightly lower statistical significance and to its proximity to the expected stellar rotation period. The data also present low frequency variations, most likely originating from a magnetic cycle and instrument systematics. Furthermore, the TESS pipeline reports a significant signal at 2.17 days corresponding to a planet of radius $approx 1.2 R_oplus$. A compatible signal is seen in the radial velocities, which confirms the detection of an additional planet and yields a $approx 2 M_oplus$ mass estimate. We find a system of five planets and a strong candidate near a 3:2 mean motion resonance chain orbiting HD 158259. The planets are found to be outside of the two and three body resonances.

قيم البحث

اقرأ أيضاً

We report the detection of a Jupiter-mass planet discovered with the SOPHIE spectrograph mounted on the 1.93-m telescope at the Haute-Provence Observatory. The new planet orbits HD109246, a G0V star slightly more metallic than the Sun. HD109246b has a minimum mass of 0.77 MJup, an orbital period of 68 days, and an eccentricity of 0.12. It is placed in a sparsely populated region of the period distribution of extrasolar planets. We also present a correction method for the so-called seeing effect that affects the SOPHIE radial velocities. We complement this discovery announcement with a description of some calibrations that are implemented in the SOPHIE automatic reduction pipeline. These calibrations allow the derivation of the photon-noise radial velocity uncertainty and some useful stellar properties (vsini, [Fe/H], logRHK) directly from the SOPHIE data.
We report the discovery of a planetary system around HD9446, performed from radial velocity measurements secured with the spectrograph SOPHIE at the 193-cm telescope of the Haute-Provence Observatory during more than two years. At least two planets o rbit this G5V, active star: HD9446b has a minimum mass of 0.7 M_Jup and a slightly eccentric orbit with a period of 30 days, whereas HD9446c has a minimum mass of 1.8 M_Jup and a circular orbit with a period of 193 days. As for most of the known multi-planet systems, the HD9446-system presents a hierarchical disposition, with a massive outer planet and a lighter inner planet.
81 - M. J. Hobson 2019
We present the detection of a Warm Neptune orbiting the M-dwarf Gl378, using radial velocity measurements obtained with the SOPHIE spectrograph at the Observatoire de Haute-Provence. The star was observed in the context of the SOPHIE exoplanets conso rtiums subprogramme dedicated to finding planets around M-dwarfs. Gl378 is an M1 star, of solar metallicity, at a distance of 14.96 pc. The single planet detected, Gl378 b, has a minimum mass of 13.02 $rm M_{Earth}$ and an orbital period of 3.82 days, which place it at the lower boundary of the Hot Neptune desert. As one of only a few such planets around M-dwarfs, Gl378 b provides important clues to the evolutionary history of these close-in planets. In particular, the eccentricity of 0.1 may point to a high-eccentricity migration. The planet may also have lost part of its envelope due to irradiation.
116 - R. F. Diaz 2011
The mass domain where massive extrasolar planets and brown dwarfs lay is still poorly understood. Indeed, not even a clear dividing line between massive planets and brown dwarfs has been established yet. This is partly due to the paucity of this kind of objects orbiting close to solar-type stars, the so-called brown dwarf desert, that hinders setting up a strong observational base to compare to models and theories of formation and evolution. We search to increase the current sample of massive sub-stellar objects with precise orbital parameters, and to constrain the true mass of detected sub-stellar candidates. The initial identification of sub-stellar candidates is done using precise radial velocity measurements obtained with the SOPHIE spectrograph at the 1.93-m telescope of the Haute-Provence Observatory. Subsequent characterisation of these candidates, with the principal aim of identifying stellar companions in low-inclination orbits, is done by means of different spectroscopic diagnostics, as the measurement of the bisector velocity span and the study of the correlation mask effect. With this objective, we also employed astrometric data from the Hipparcos mission and a novel method of simulating stellar cross-correlation functions. Seven new objects with minimum masses between ~ 10 Mjup and ~90 Mjup are detected. Out of these, two are identified as low-mass stars in low-inclination orbits, and two others have masses below the theoretical deuterium-burning limit, and are therefore planetary candidates. The remaining three are brown dwarf candidates; the current upper limits for their the masses do not allow us to conclude on their nature. Additionally, we have improved on the parameters of an already-known brown dwarf (HD137510b), confirmed by astrometry.
341 - F. Bouchy , G. Hebrard , S. Udry 2009
We report on the discovery of a substellar companion or a massive Jupiter orbiting the G5V star HD16760 with the spectrograph SOPHIE installed on the OHP 1.93-m telescope. Characteristics and performances of the spectrograph are presented, as well as the SOPHIE exoplanet consortium program. With a minimum mass of 14.3 Mjup, an orbital period of 465 days and an eccentricity of 0.067, HD16760b seems to be located just at the end of the mass distribution of giant planets, close to planet/brown-dwarf transition. Its quite circular orbit supports a formation in a gaseous protoplanetary disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا