ﻻ يوجد ملخص باللغة العربية
In this paper we study smooth orientation-preserving free actions of the cyclic group $mathbb Z/m$ on a class of $(n-1)$-connected $2n$-manifolds, $sharp g (S^n times S^n)sharp Sigma$, where $Sigma$ is a homotopy $2n$-sphere. When $n=2$ we obtain a classification up to topological conjugation. When $n=3$ we obtain a classification up to smooth conjugation. When $n ge 4$ we obtain a classification up to smooth conjugation when the prime factors of $m$ are larger than a constant $C(n)$.
Let $ text{Mod}(S_g)$ denote the mapping class group of the closed orientable surface $S_g$ of genus $ggeq 2$, and let $fin text{Mod}(S_g)$ be of finite order. We give an inductive procedure to construct an explicit hyperbolic structure on $S_g$ that
Let $ text{Mod}(S_g)$ denote the mapping class group of the closed orientable surface $S_g$ of genus $ggeq 2$. Given a finite subgroup $H leq text{Mod}(S_g)$, let $text{Fix}(H)$ denote the set of fixed points induced by the action of $H$ on the Teich
For $k ge 2,$ let $M^{4k-1}$ be a $(2k{-}2)$-connected closed manifold. If $k equiv 1$ mod $4$ assume further that $M$ is $(2k{-}1)$-parallelisable. Then there is a homotopy sphere $Sigma^{4k-1}$ such that $M sharp Sigma$ admits a Ricci positive metr
Denote by $DC(M)_0$ the identity component of the group of compactly supported $C^infty$ diffeomorphisms of a connected $C^infty$ manifold $M$, and by $HR$ the group of the homeomorphisms of $R$. We show that if $M$ is a closed manifold which fibers
As a generalization of Davis-Januszkiewicz theory, there is an essential link between locally standard $(Z_2)^n$-actions (or $T^n$-actions) actions and nice manifolds with corners, so that a class of nicely behaved equivariant cut-and-paste operation