ترغب بنشر مسار تعليمي؟ اضغط هنا

Duality for noncommutative frames

93   0   0.0 ( 0 )
 نشر من قبل Jens Hemelaer
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We characterize the left-handed noncommutative frames that arise from sheaves on topological spaces. Further, we show that a general left-handed noncommutative frame $A$ arises from a sheaf on the dissolution locale associated to the commutative shadow of $A$. Both constructions are made precise in terms of dual equivalences of categories, similar to the duality result for strongly distributive skew lattices in arXiv:1206.5848.



قيم البحث

اقرأ أيضاً

In this note, we correct an error in arXiv:1702.04949 by adding an additional assumption of join completeness. We demonstrate with examples why this assumption is necessary, and discuss how join completeness relates to other properties of a skew lattice.
We extend Stone duality between generalized Boolean algebras and Boolean spaces, which are the zero-dimensional locally-compact Hausdorff spaces, to a non-commutative setting. We first show that the category of right-handed skew Boolean algebras with intersections is dual to the category of surjective etale maps between Boolean spaces. We then extend the duality to skew Boolean algebras with intersections, and consider several variations in which the morphisms are restricted. Finally, we use the duality to construct a right-handed skew Boolean algebra without a lattice section.
We prove that the category of left-handed strongly distributive skew lattices with zero and proper homomorphisms is dually equivalent to a category of sheaves over local Priestley spaces. Our result thus provides a non-commutative version of classica l Priestley duality for distributive lattices and generalizes the recent development of Stone duality for skew Boolean algebras. From the point of view of skew lattices, Leech showed early on that any strongly distributive skew lattice can be embedded in the skew lattice of partial functions on some set with the operations being given by restriction and so-called override. Our duality shows that there is a canonical choice for this embedding. Conversely, from the point of view of sheaves over Boolean spaces, our results show that skew lattices correspond to Priestley orders on these spaces and that skew lattice structures are naturally appropriate in any setting involving sheaves over Priestley spaces.
We study the effect of noncommutativity of space on the physics of a quantum interferometer located in a rotating disk in a gauge field background. To this end, we develop a path-integral approach which allows defining an effective action from which relevant physical quantities can be computed as in the usual commutative case. For the specific case of a constant magnetic field, we are able to compute, exactly, the noncommutative Lagrangian and the associated shift on the interference pattern for any value of $theta$.
135 - Mai Gehrke 2013
We establish a topological duality for bounded lattices. The two main features of our duality are that it generalizes Stone duality for bounded distributive lattices, and that the morphisms on either side are not the standard ones. A positive consequ ence of the choice of morphisms is that those on the topological side are functional. Towards obtaining the topological duality, we develop a universal construction which associates to an arbitrary lattice two distributive lattice envelopes with a Galois connection between them. This is a modification of a construction of the injective hull of a semilattice by Bruns and Lakser, adjusting their concept of admissibility to the finitary case. Finally, we show that the dual spaces of the distributive envelopes of a lattice coincide with completions of quasi-uniform spaces naturally associated with the lattice, thus giving a precise spatial meaning to the distributive envelopes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا