ﻻ يوجد ملخص باللغة العربية
We characterize the left-handed noncommutative frames that arise from sheaves on topological spaces. Further, we show that a general left-handed noncommutative frame $A$ arises from a sheaf on the dissolution locale associated to the commutative shadow of $A$. Both constructions are made precise in terms of dual equivalences of categories, similar to the duality result for strongly distributive skew lattices in arXiv:1206.5848.
In this note, we correct an error in arXiv:1702.04949 by adding an additional assumption of join completeness. We demonstrate with examples why this assumption is necessary, and discuss how join completeness relates to other properties of a skew lattice.
We extend Stone duality between generalized Boolean algebras and Boolean spaces, which are the zero-dimensional locally-compact Hausdorff spaces, to a non-commutative setting. We first show that the category of right-handed skew Boolean algebras with
We prove that the category of left-handed strongly distributive skew lattices with zero and proper homomorphisms is dually equivalent to a category of sheaves over local Priestley spaces. Our result thus provides a non-commutative version of classica
We study the effect of noncommutativity of space on the physics of a quantum interferometer located in a rotating disk in a gauge field background. To this end, we develop a path-integral approach which allows defining an effective action from which
We establish a topological duality for bounded lattices. The two main features of our duality are that it generalizes Stone duality for bounded distributive lattices, and that the morphisms on either side are not the standard ones. A positive consequ