ترغب بنشر مسار تعليمي؟ اضغط هنا

Noncommutative Quantum Mechanics and rotating frames

70   0   0.0 ( 0 )
 نشر من قبل Hugo Christiansen
 تاريخ النشر 2001
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the effect of noncommutativity of space on the physics of a quantum interferometer located in a rotating disk in a gauge field background. To this end, we develop a path-integral approach which allows defining an effective action from which relevant physical quantities can be computed as in the usual commutative case. For the specific case of a constant magnetic field, we are able to compute, exactly, the noncommutative Lagrangian and the associated shift on the interference pattern for any value of $theta$.



قيم البحث

اقرأ أيضاً

154 - J. Lages , A. Berard , H. Mohrbach 2007
Dyson published in 1990 a proof due to Feynman of the Maxwell equations. This proof is based on the assumption of simple commutation relations between position and velocity. We first study a nonrelativistic particle using Feynman formalism. We show t hat Poincar{e}s magnetic angular momentum and Dirac magnetic monopole are the direct consequences of the structure of the sO(3) Lie algebra in Feynman formalism. Then we show how to extend this formalism to the dual momentum space with the aim of introducing Noncommutative Quantum Mechanics which was recently the subject of a wide range of works from particle physics to condensed matter physics.
We introduce new representations to formulate quantum mechanics on noncommutative coordinate space, which explicitly display entanglement properties between degrees of freedom of different coordinate components and hence could be called entangled sta te representations. Furthermore, we derive unitary transformations between the new representations and the ordinary one used in noncommutative quantum mechanics (NCQM) and obtain eigenfunctions of some basic operators in these representations. To show the potential applications of the entangled state representations, a two-dimensional harmonic oscillator on the noncommutative plane with both coordinate-coordinate and momentum-momentum couplings is exactly solved.
A general three-dimensional noncommutative quantum mechanical system mixing spatial and spin degrees of freedom is proposed. The analogous of the harmonic oscillator in this description contains a magnetic dipole interaction and the ground state is e xplicitly computed and we show that it is infinitely degenerated and implying a spontaneous symmetry breaking. The model can be straightforwardly extended to many particles and the main above properties are retained. Possible applications to the Bose-Einstein condensation with dipole-dipole interactions are briefly discussed.
In this note, we correct an error in arXiv:1702.04949 by adding an additional assumption of join completeness. We demonstrate with examples why this assumption is necessary, and discuss how join completeness relates to other properties of a skew lattice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا