ﻻ يوجد ملخص باللغة العربية
Competing interactions in Quantum Materials induce novel states of matter such as frustrated magnets, an extensive field of research both from the theoretical and experimental perspectives. Here, we show that competing energy scales present in the low-dimensional orbital-selective Mott phase (OSMP) induce an exotic magnetic order, never reported before. Earlier neutron scattering experiments on iron-based 123 ladder materials, where OSMP is relevant, already confirmed our previous theoretical prediction of block-magnetism (magnetic order of the form $uparrowuparrowdownarrowdownarrow$). Now we argue that another novel phase can be stabilized in multi-orbital Hubbard models, the {it block-spiral state}. In this state, the magnetic islands form a spiral propagating through the chain but with the blocks maintaining their identity, namely rigidly rotating. This new spiral state is stabilized without any apparent frustration, the common avenue to generate spiral arrangements in multiferroics. By examining the behaviour of the electronic degrees of freedom, parity breaking quasiparticles are revealed. Finally, a simple phenomenological model that accurately captures the macroscopic spin spiral arrangement is also introduced, and fingerprints for the neutron scattering experimental detection of our new state are provided.
SrHo2O4 is a geometrically frustrated magnet in which the magnetic Ho3+ ions form honeycomb layers connected through a network of zigzag chains. At low-temperature two distinct types of short-range magnetic order can be inferred from single crystal d
We study the spin-1 honeycomb lattice magnets with frustrated exchange interactions. The proposed microscopic spin model contains first and second neighbor Heisenberg interactions as well as the single-ion anisotropy. We establish a rich phase diagra
We investigate properties of a spin-1 Heisenberg model with extended and biquadratic interactions, which captures crucial aspects of the low energy physics in FeSe. While we show that the model exhibits a rich phase diagram with four different magnet
Magnetic ($chi$), transport ($rho$) and heat capacity ($C_m$)properties of CeIrSi are investigated to elucidate the effect of geometric frustration in this compound with trillium type structure because, notwithstanding its robust effective moment, $m
Identifying the time reversal symmetry of spins as a symplectic symmetry, we develop a large N approximation for quantum magnetism that embraces both antiferromagnetism and ferromagnetism. In SU(N), N>2, not all spins invert under time reversal, so w