ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance optimization for drift-robust fidelity improvement of two-qubit gates

82   0   0.0 ( 0 )
 نشر من قبل Gregory White
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum system characterization techniques represent the front line in the identification and mitigation of noise in quantum computing, but can be expensive in terms of quantum resources and time to repeatedly employ. Another challenging aspect is that parameters governing the performance of various operations tend to drift over time, and monitoring these is hence a difficult task. One of the most promising characterization techniques, gate set tomography (GST), provides a self-consistent estimate of the completely positive, trace-preserving (CPTP) maps for a complete set of gates, as well as preparation and measurement operators. We develop a method for performance optimization seeded by tomography (POST), which couples the power of GST with a classical optimization routine to achieve a consistent gate improvement in just a short number of steps within a given calibration cycle. By construction, the POST procedure finds the best available gate operation given the hardware, and is therefore robust to the effects of drift. Further, in comparison to other quantum error mitigation techniques, it builds upon a one-time application of GST. To demonstrate the performance of this method on a real quantum computer, we map out the operations of six qubit pairs on the superconducting emph{ibmq_poughkeepsie} quantum device. Under the restriction of logical-only control, we monitor the performance of the POST approach on a chosen CNOT gate over a period of six weeks. In this time, we achieve a consistent improvement in gate fidelity, averaging a fidelity increase of 21.1% as measured by randomized benchmarking. The POST approach should find wide applicability as it is hardware agnostic, and can be applied at the upper logical level or at a deeper pulse control level.


قيم البحث

اقرأ أيضاً

A two-qubit controlled-NOT (CNOT) gate, realized by a controlled-phase (C-phase) gate combined with single-qubit gates, has been experimentally implemented recently for quantum-dot spin qubits in isotopically enriched silicon, a promising solid-state system for practical quantum computation. In the experiments, the single-qubit gates have been demonstrated with fault-tolerant control-fidelity, but the infidelity of the two-qubit C-phase gate is, primarily due to the electrical noise, still higher than the required error threshold for fault-tolerant quantum computation (FTQC). Here, by taking the realistic system parameters and the experimental constraints on the control pulses into account, we construct experimentally realizable high-fidelity CNOT gates robust against electrical noise with the experimentally measured $1/f^{1.01}$ noise spectrum and also against the uncertainty in the interdot tunnel coupling amplitude. Our optimal CNOT gate has about two orders of magnitude improvement in gate infidelity over the ideal C-phase gate constructed without considering any noise effect. Furthermore, within the same control framework, high-fidelity and robust single-qubit gates can also be constructed, paving the way for large-scale FTQC.
Two-qubit gates in trapped ion quantum computers are generated by applying spin-dependent forces that temporarily entangle the internal state of the ion with its motion. Laser pulses are carefully designed to generate a maximally entangling gate betw een the ions while minimizing any residual entanglement between the motion and the ion. The quality of the gates suffers when actual experimental parameters differ from the ideal case. Here we improve the robustness of frequency-modulated M{o}lmer-S{o}rensen gates to motional mode frequency offsets by optimizing average performance over a range of systematic errors using batch optimization. We then compare this method to frequency modulated gates optimized for ideal parameters that include an analytic robustness condition. Numerical simulations show good performance up to 12 ions and the method is experimentally demonstrated on a two-ion chain.
We present a tuneup protocol for qubit gates with tenfold speedup over traditional methods reliant on qubit initialization by energy relaxation. This speedup is achieved by constructing a cost function for Nelder-Mead optimization from real-time corr elation of non-demolition measurements interleaving gate operations without pause. Applying the protocol on a transmon qubit achieves 0.999 average Clifford fidelity in one minute, as independently verified using randomized benchmarking and gate set tomography. The adjustable sensitivity of the cost function allows detecting fractional changes in gate error with nearly constant signal-to-noise ratio. The restless concept demonstrated can be readily extended to the tuneup of two-qubit gates and measurement operations.
160 - W. Huang , C. H. Yang , K. W. Chan 2018
Universal quantum computation will require qubit technology based on a scalable platform, together with quantum error correction protocols that place strict limits on the maximum infidelities for one- and two-qubit gate operations. While a variety of qubit systems have shown high fidelities at the one-qubit level, superconductor technologies have been the only solid-state qubits manufactured via standard lithographic techniques which have demonstrated two-qubit fidelities near the fault-tolerant threshold. Silicon-based quantum dot qubits are also amenable to large-scale manufacture and can achieve high single-qubit gate fidelities (exceeding 99.9%) using isotopically enriched silicon. However, while two-qubit gates have been demonstrated in silicon, it has not yet been possible to rigorously assess their fidelities using randomized benchmarking, since this requires sequences of significant numbers of qubit operations ($gtrsim 20$) to be completed with non-vanishing fidelity. Here, for qubits encoded on the electron spin states of gate-defined quantum dots, we demonstrate Bell state tomography with fidelities ranging from 80% to 89%, and two-qubit randomized benchmarking with an average Clifford gate fidelity of 94.7% and average Controlled-ROT (CROT) fidelity of 98.0%. These fidelities are found to be limited by the relatively slow gate times employed here compared with the decoherence times $T_2^*$ of the qubits. Silicon qubit designs employing fast gate operations based on high Rabi frequencies, together with advanced pulsing techniques, should therefore enable significantly higher fidelities in the near future.
In a large scale trapped atomic ion quantum computer, high-fidelity two-qubit gates need to be extended over all qubits with individual control. We realize and characterize high-fidelity two-qubit gates in a system with up to 4 ions using radial mode s. The ions are individually addressed by two tightly focused beams steered using micro-electromechanical system (MEMS) mirrors. We deduce a gate fidelity of 99.49(7)% in a two-ion chain and 99.30(6)% in a four-ion chain by applying a sequence of up to 21 two-qubit gates and measuring the final state fidelity. We characterize the residual errors and discuss methods to further improve the gate fidelity towards values that are compatible with fault-tolerant quantum computation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا