ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Learning with Gaussian Differential Privacy

111   0   0.0 ( 0 )
 نشر من قبل Weijie J. Su
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep learning models are often trained on datasets that contain sensitive information such as individuals shopping transactions, personal contacts, and medical records. An increasingly important line of work therefore has sought to train neural networks subject to privacy constraints that are specified by differential privacy or its divergence-based relaxations. These privacy definitions, however, have weaknesses in handling certain important primitives (composition and subsampling), thereby giving loose or complicated privacy analyses of training neural networks. In this paper, we consider a recently proposed privacy definition termed textit{$f$-differential privacy} [18] for a refined privacy analysis of training neural networks. Leveraging the appealing properties of $f$-differential privacy in handling composition and subsampling, this paper derives analytically tractable expressions for the privacy guarantees of both stochastic gradient descent and Adam used in training deep neural networks, without the need of developing sophisticated techniques as [3] did. Our results demonstrate that the $f$-differential privacy framework allows for a new privacy analysis that improves on the prior analysis~[3], which in turn suggests tuning certain parameters of neural networks for a better prediction accuracy without violating the privacy budget. These theoretically derived improvements are confirmed by our experiments in a range of tasks in image classification, text classification, and recommender systems. Python code to calculate the privacy cost for these experiments is publicly available in the texttt{TensorFlow Privacy} library.



قيم البحث

اقرأ أيضاً

Traditional differential privacy is independent of the data distribution. However, this is not well-matched with the modern machine learning context, where models are trained on specific data. As a result, achieving meaningful privacy guarantees in M L often excessively reduces accuracy. We propose Bayesian differential privacy (BDP), which takes into account the data distribution to provide more practical privacy guarantees. We also derive a general privacy accounting method under BDP, building upon the well-known moments accountant. Our experiments demonstrate that in-distribution samples in classic machine learning datasets, such as MNIST and CIFAR-10, enjoy significantly stronger privacy guarantees than postulated by DP, while models maintain high classification accuracy.
We consider the problem of reinforcing federated learning with formal privacy guarantees. We propose to employ Bayesian differential privacy, a relaxation of differential privacy for similarly distributed data, to provide sharper privacy loss bounds. We adapt the Bayesian privacy accounting method to the federated setting and suggest multiple improvements for more efficient privacy budgeting at different levels. Our experiments show significant advantage over the state-of-the-art differential privacy bounds for federated learning on image classification tasks, including a medical application, bringing the privacy budget below 1 at the client level, and below 0.1 at the instance level. Lower amounts of noise also benefit the model accuracy and reduce the number of communication rounds.
This paper attempts to answer the question whether neural network pruning can be used as a tool to achieve differential privacy without losing much data utility. As a first step towards understanding the relationship between neural network pruning an d differential privacy, this paper proves that pruning a given layer of the neural network is equivalent to adding a certain amount of differentially private noise to its hidden-layer activations. The paper also presents experimental results to show the practical implications of the theoretical finding and the key parameter values in a simple practical setting. These results show that neural network pruning can be a more effective alternative to adding differentially private noise for neural networks.
Because learning sometimes involves sensitive data, machine learning algorithms have been extended to offer privacy for training data. In practice, this has been mostly an afterthought, with privacy-preserving models obtained by re-running training w ith a different optimizer, but using the model architectures that already performed well in a non-privacy-preserving setting. This approach leads to less than ideal privacy/utility tradeoffs, as we show here. Instead, we propose that model architectures are chosen ab initio explicitly for privacy-preserving training. To provide guarantees under the gold standard of differential privacy, one must bound as strictly as possible how individual training points can possibly affect model updates. In this paper, we are the first to observe that the choice of activation function is central to bounding the sensitivity of privacy-preserving deep learning. We demonstrate analytically and experimentally how a general family of bounded activation functions, the tempered sigmoids, consistently outperform unbounded activation functions like ReLU. Using this paradigm, we achieve new state-of-the-art accuracy on MNIST, FashionMNIST, and CIFAR10 without any modification of the learning procedure fundamentals or differential privacy analysis.
We prove a general connection between the communication complexity of two-player games and the sample complexity of their multi-player locally private analogues. We use this connection to prove sample complexity lower bounds for locally differentiall y private protocols as straightforward corollaries of results from communication complexity. In particular, we 1) use a communication lower bound for the hidden layers problem to prove an exponential sample complexity separation between sequentially and fully interactive locally private protocols, and 2) use a communication lower bound for the pointer chasing problem to prove an exponential sample complexity separation between $k$ round and $k+1$ round sequentially interactive locally private protocols, for every $k$.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا