ترغب بنشر مسار تعليمي؟ اضغط هنا

Biologically Plausible Sequence Learning with Spiking Neural Networks

114   0   0.0 ( 0 )
 نشر من قبل Thiparat Chotibut
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by the celebrated discrete-time model of nervous activity outlined by McCulloch and Pitts in 1943, we propose a novel continuous-time model, the McCulloch-Pitts network (MPN), for sequence learning in spiking neural networks. Our model has a local learning rule, such that the synaptic weight updates depend only on the information directly accessible by the synapse. By exploiting asymmetry in the connections between binary neurons, we show that MPN can be trained to robustly memorize multiple spatiotemporal patterns of binary vectors, generalizing the ability of the symmetric Hopfield network to memorize static spatial patterns. In addition, we demonstrate that the model can efficiently learn sequences of binary pictures as well as generative models for experimental neural spike-train data. Our learning rule is consistent with spike-timing-dependent plasticity (STDP), thus providing a theoretical ground for the systematic design of biologically inspired networks with large and robust long-range sequence storage capacity.

قيم البحث

اقرأ أيضاً

Learning latent features from time series data is an important problem in both machine learning and brain function. One approach, called Slow Feature Analysis (SFA), leverages the slowness of many salient features relative to the rapidly varying inpu t signals. Furthermore, when trained on naturalistic stimuli, SFA reproduces interesting properties of cells in the primary visual cortex and hippocampus, suggesting that the brain uses temporal slowness as a computational principle for learning latent features. However, despite the potential relevance of SFA for modeling brain function, there is currently no SFA algorithm with a biologically plausible neural network implementation, by which we mean an algorithm operates in the online setting and can be mapped onto a neural network with local synaptic updates. In this work, starting from an SFA objective, we derive an SFA algorithm, called Bio-SFA, with a biologically plausible neural network implementation. We validate Bio-SFA on naturalistic stimuli.
We study a network of spiking neurons with heterogeneous excitabilities connected via inhibitory delayed pulses. For globally coupled systems the increase of the inhibitory coupling reduces the number of firing neurons by following a Winner Takes All mechanism. For sufficiently large transmission delay we observe the emergence of collective oscillations in the system beyond a critical coupling value. Heterogeneity promotes neural inactivation and asynchronous dynamics and its effect can be counteracted by considering longer time delays. In sparse networks, inhibition has the counterintuitive effect of promoting neural reactivation of silent neurons for sufficiently large coupling. In this regime, current fluctuations are on one side responsible for neural firing of sub-threshold neurons and on the other side for their desynchronization. Therefore, collective oscillations are present only in a limited range of coupling values, which remains finite in the thermodynamic limit. Out of this range the dynamics is asynchronous and for very large inhibition neurons display a bursting behaviour alternating periods of silence with periods where they fire freely in absence of any inhibition.
244 - Wenrui Zhang , Peng Li 2020
Spiking neural networks (SNNs) are well suited for spatio-temporal learning and implementations on energy-efficient event-driven neuromorphic processors. However, existing SNN error backpropagation (BP) methods lack proper handling of spiking discont inuities and suffer from low performance compared with the BP methods for traditional artificial neural networks. In addition, a large number of time steps are typically required to achieve decent performance, leading to high latency and rendering spike-based computation unscalable to deep architectures. We present a novel Temporal Spike Sequence Learning Backpropagation (TSSL-BP) method for training deep SNNs, which breaks down error backpropagation across two types of inter-neuron and intra-neuron dependencies and leads to improved temporal learning precision. It captures inter-neuron dependencies through presynaptic firing times by considering the all-or-none characteristics of firing activities and captures intra-neuron dependencies by handling the internal evolution of each neuronal state in time. TSSL-BP efficiently trains deep SNNs within a much shortened temporal window of a few steps while improving the accuracy for various image classification datasets including CIFAR10.
We present an efficient learning algorithm for the problem of training neural networks with discrete synapses, a well-known hard (NP-complete) discrete optimization problem. The algorithm is a variant of the so-called Max-Sum (MS) algorithm. In parti cular, we show how, for bounded integer weights with $q$ distinct states and independent concave a priori distribution (e.g. $l_{1}$ regularization), the algorithms time complexity can be made to scale as $Oleft(Nlog Nright)$ per node update, thus putting it on par with alternative schemes, such as Belief Propagation (BP), without resorting to approximations. Two special cases are of particular interest: binary synapses $Win{-1,1}$ and ternary synapses $Win{-1,0,1}$ with $l_{0}$ regularization. The algorithm we present performs as well as BP on binary perceptron learning problems, and may be better suited to address the problem on fully-connected two-layer networks, since inherent symmetries in two layer networks are naturally broken using the MS approach.
Neuroscientists have long criticised deep learning algorithms as incompatible with current knowledge of neurobiology. We explore more biologically plausibl

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا