ترغب بنشر مسار تعليمي؟ اضغط هنا

Reliability studies of electronic components for the operation at cryogenic temperature

104   0   0.0 ( 0 )
 نشر من قبل N Poonthottathil
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cold electronics is a key technology in many areas of science and technology including space exploration programs and particle physics. A major experiment with a very large number of analog and digital electronics signal processing channels to be operated at cryogenic temperatures is the next-generation neutrino experiment, the Deep Underground Neutrino Experiment (DUNE). The DUNE detector uses liquid Argon at 87K as a target material for neutrinos, and as a medium to track charged particles resulting from interactions in the detector volume. The DUNE electronics [1] consists of custom-designed ASIC (Application Specific Integrated Circuits) chips based on low power 180 nm-CMOS technology. The main risk for this technology is that the electronics components will be immersed in liquid argon for many years (20-30 years) without access. Reliability issues of ASICs may arise from thermal stress, packaging, and manufacturing-related defects: if undetected those could lead to long-term reliability and performance problems. The scope of this paper is to explore non-destructive evaluation techniques for their potential use in a comprehensive quality control process during prototyping, testing and commissioning of the DUNE cold electronics system. Specifically, we have used the Scanning Acoustic Microscopy and X-ray tomography to study permanent structural changes in the ASIC chips associated with thermal cycling between the room and cryogenic temperatures.



قيم البحث

اقرأ أيضاً

In this paper we describe the technology of building a vacuum-tight high voltage feedthrough which is able to operate at voltages up to 30 kV. The feedthrough has a coaxial structure with a grounded sheath which makes it capable to lead high voltage potentials into cryogenic liquids, without risk of surface discharges in the gas phase above the liquid level. The feedthrough is designed to be used in ionization detectors, based on liquefied noble gases, such as Argon or Xenon.
ICARUS T600 liquid argon time projection chamber is the first large mass electronic detector of a new generation able to combine the imaging capabilities of the old bubble chambers with the excellent calorimetric energy measurement. After the three m onths demonstration run on surface in Pavia during 2001, the T600 cryogenic plant was significantly revised, in terms of reliability and safety, in view of its long-term operation in an underground environment. The T600 detector was activated in Hall B of the INFN Gran Sasso Laboratory during Spring 2010, where it was operated without interruption for about three years, taking data exposed to the CERN to Gran Sasso long baseline neutrino beam and cosmic rays. In this paper the T600 cryogenic plant is described in detail together with the commissioning procedures that lead to the successful operation of the detector shortly after the end of the filling with liquid Argon. Overall plant performance and stability during the long-term underground operation are discussed. Finally, the decommissioning procedures, carried out about six months after the end of the CNGS neutrino beam operation, are reported.
131 - R.A. Ryan , F. Wauters , F.E. Gray 2014
The central detector in the MuSun experiment is a pad-plane time projection ionization chamber that operates without gas amplification in deuterium at 31 K; it is used to measure the rate of the muon capture process $mu^- + d rightarrow n + n + u_mu $. A new charge-sensitive preamplifier, operated at 140 K, has been developed for this detector. It achieved a resolution of 4.5 keV(D$_2$) or 120 $e^-$ RMS with zero detector capacitance at 1.1 $mu$s integration time in laboratory tests. In the experimental environment, the electronic resolution is 10 keV(D$_2$) or 250 $e^-$ RMS at a 0.5 $mu$s integration time. The excellent energy resolution of this amplifier has enabled discrimination between signals from muon-catalyzed fusion and muon capture on chemical impurities, which will precisely determine systematic corrections due to these processes. It is also expected to improve the muon tracking and determination of the stopping location.
We have demonstrated that hole-type gaseous detectors, GEMs and capillary plates, can operate up to 77 K. For example, a single capillary plate can operate at gains of above 10E3 in the entire temperature interval between 300 until 77 K. The same cap illary plate combined with CsI photocathodes could operate perfectly well at gains (depending on gas mixtures) of 100-1000. Obtained results may open new fields of applications for capillary plates as detectors of UV light and charge particles at cryogenic temperatures: noble liquid TPCs, WIMP detectors or LXe scintillating calorimeters and cryogenic PETs.
Data sets with high statistics taken at the cosmic ray facility, equipped with 3 ATLAS BOS MDT chambers, in Garching (Munich) have been used to study temperature and pressure effects on gas gain and drifttime. The deformation of a thermally expanded chamber was reconstructed using the internal RasNik alignment monitoring system and the tracks from cosmic data. For these studies a heating system was designed to increase the temperature of the middle chamber by up to 20 Kelvins over room temperature. For comparison the temperature effects on gas properties have been simulated with Garfield. The maximum drifttime decreased under temperature raise by -2.21 +- 0.08 ns/K, in agreement with the results of pressure variations and the Garfield simulation. The increased temperatures led to a linear increase of the gas gain of about 2.1% 1/K. The chamber deformation has been analyzed with the help of reconstructed tracks. By the comparison of the tracks through the reference chambers with these through the test chamber the thermal expansion has been reconstructed and the result shows agreement with the theoretical expansion coefficient. As the wires are fixed at the end of the chamber, the wire position calculation can not provide a conclusion for the chamber middle. The complete deformation has been identified with the analysis of the monitoring system RasNik, whose measured values have shown a homogeneous expansion of the whole chamber, overlayed by a shift and a rotation of the chamber middle with respect to the outer part of the chamber. The established results of both methods are in agreement. We present as well a model for the position-drifttime correction as function of temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا