ترغب بنشر مسار تعليمي؟ اضغط هنا

Suppressed Charge Dispersion via Resonant Tunneling in a Single-Channel Transmon

65   0   0.0 ( 0 )
 نشر من قبل Anders Kringh{\\o}j
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate strong suppression of charge dispersion in a semiconductor-based transmon qubit across Josephson resonances associated with a quantum dot in the junction. On resonance, dispersion is drastically reduced compared to conventional transmons with corresponding Josephson and charging energies. We develop a model of qubit dispersion for a single-channel resonance, which is in quantitative agreement with experimental data.



قيم البحث

اقرأ أيضاً

289 - M. Gryglas , M. Baj , B. Chenaud 2004
We perform the investigations of the resonant tunneling via impurities embedded in the AlAs barrier of a single GaAs/AlGaAs heterostructure. In the $I(V)$ characteristics measured at 30mK, the contribution of individual donors is resolved and the fin gerprints of phonon assistance in the tunneling process are seen. The latter is confirmed by detailed analysis of the tunneling rates and the modeling of the resonant tunneling contribution to the current. Moreover, fluctuations of the local structure of the DOS (LDOS) and Fermi edge singularities are observed.
Hexagonal boron nitride (hBN) is a prototypical high-quality two-dimensional insulator and an ideal material to study tunneling phenomena, as it can be easily integrated in vertical van der Waals devices. For spintronic devices, its potential has bee n demonstrated both for efficient spin injection in lateral spin valves and as a barrier in magnetic tunnel junctions (MTJs). Here we reveal the effect of point defects inevitably present in mechanically exfoliated hBN on the tunnel magnetoresistance of Co-hBN-NiFe MTJs. We observe a clear enhancement of both the conductance and magnetoresistance of the junction at well-defined bias voltages, indicating resonant tunneling through magnetic (spin-polarized) defect states. The spin polarization of the defect states is attributed to exchange coupling of a paramagnetic impurity in the few-atomic-layer thick hBN to the ferromagnetic electrodes. This is confirmed by excellent agreement with theoretical modelling. Our findings should be taken into account in analyzing tunneling processes in hBN-based magnetic devices. More generally, our study shows the potential of using atomically thin hBN barriers with defects to engineer the magnetoresistance of MTJs and to achieve spin filtering, opening the door towards exploiting the spin degree of freedom in current studies of point defects as quantum emitters.
We performed quantum manipulations of the multi-level spin system S=5/2 of a Mn$^{2+}$ ion, by means of a two-tone pulse drive. The detuning between the excitation and readout radio frequency pulses allows one to select the number of photons involved in a Rabi oscillation as well as increase the frequency of this nutation. Thus detuning can lead to a resonant multi-photon process. Our analytical model for a two-photon process as well as a numerical generalization fit well the experimental findings, with implications in the use of multi-level spin systems as tunable solid state qubits.
Several models of thermionic energy nanoconverters have been proposed to study the transport phenomena that take place in electronic devices. For example, in resonant tunneling junctions those phenomena are manifested through the thermoelectric effec ts. The coupling between the electron flux and the heat flux in this type of semiconductor heterostructures, not only allows to obtain transport coefficients (electrical and thermal conductivities, and a Seebeck--like and Peltier--like coefficients), but also to study its operation as a thermionic generator or as a refrigerator within the context of irreversible thermodynamics. The existence of the characteristic steady states that can be reached by any linear energy converter led us to characterize a family of Seebeck--like coefficients, as well as establish bounds for the values of a kind of figure of merit $(Tz_{D,I})$, both associated with the well-known operating regimes: minimum dissipation function, maximum power output, maximum efficiency and maximum compromise function. By taking as example an $Al_{x}GaAs/GaAs$ junction, we found that the transport coefficients depend strongly on temperature and the conduction band height, which can be modulated according to the selected operation mode.
204 - R. Harris , M.W. Johnson , S. Han 2008
Macroscopic resonant tunneling between the two lowest lying states of a bistable RF-SQUID is used to characterize noise in a flux qubit. Measurements of the incoherent decay rate as a function of flux bias revealed a Gaussian shaped profile that is n ot peaked at the resonance point, but is shifted to a bias at which the initial well is higher than the target well. The r.m.s. amplitude of the noise, which is proportional to the decoherence rate 1/T_2^*, was observed to be weakly dependent on temperature below 70 mK. Analysis of these results indicates that the dominant source of low frequency (1/f) flux noise in this device is a quantum mechanical environment in thermal equilibrium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا