ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlating photons using the collective nonlinear response of atoms weakly coupled to an optical mode

104   0   0.0 ( 0 )
 نشر من قبل Juergen Volz
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Photons in a nonlinear medium can repel or attract each other, resulting in a strongly correlated quantum many-body system. Typically, such strongly correlated states of light arise from the extreme nonlinearity granted by quantum emitters that are strongly coupled to a photonic mode. However, in these approaches, unavoidable dissipation, like photon loss, blurs nonlinear quantum effects. Here, we generate strongly correlated photon states using only weak coupling and taking advantage of dissipation. We launch light through an ensemble of non-interacting waveguide-coupled atoms, which induce correlations between simultaneously arriving photons through collectively enhanced nonlinear interactions. These correlated photons then experience less dissipation than the uncorrelated ones. Depending on the number of atoms, we experimentally observe strong photon bunching or anti-bunching of the transmitted light. This realization of a collectively enhanced nonlinearity may turn out transformational for quantum information science and opens new avenues for generating nonclassical light, covering frequencies from the microwave to the X-ray regime.



قيم البحث

اقرأ أيضاً

We experimentally and theoretically investigate collective radiative effects in an ensemble of cold atoms coupled to a single-mode optical nanofiber. Our analysis unveils the microscopic dynamics of the system, showing that collective interactions be tween the atoms and a single guided photon gradually build-up along the atomic array in the direction of propagation of light. These results are supported by time-resolved measurements of the light transmitted and reflected by the ensemble after excitation via nanofiber-guided laser pulses, whose rise and fall times are shorter than the atomic lifetime. Superradiant decays more than one order of magnitude faster than the single-atom free-space decay rate are observed for emission in the forward-propagating guided mode, while at the same time no speed-up of the decay rate are measured in the backward direction. In addition, position-resolved measurements of the light that is transmitted past the atoms are performed by inserting the nanofiber-coupled atomic array in a 45-m long fiber ring-resonator, which allow us to experimentally reveal the progressive growth of the collective response of the atomic ensemble. Our results highlight the unique opportunities offered by nanophotonic cold atom systems for the experimental investigation of collective light-matter interaction.
Optical nonreciprocity is important in photonic information processing to route the optical signal or prevent the reverse flow of noise. By adopting the strong nonlinearity associated with a few atoms in a strongly coupled cavity QED system and an as ymmetric cavity configuration, we experimentally demonstrate the nonreciprocal transmission between two counterpropagating light fields with extremely low power. This nonreciprocity can even occur on a few-photon level due to the high optical nonlinearity of the system. The working power can be flexibly tuned by changing the effective number of atoms strongly coupled to the cavity. The idea and result can be applied to optical chips as optical diodes by using fiber-based cavity QED systems. Our work opens up new perspectives for realizing optical nonreciprocity on a few-photon level based on the nonlinearities of atoms strongly coupled to an optical cavity.
We have developed an optical lattice clock that can operate in dual modes: a strontium (Sr) clock mode and an ytterbium (Yb) clock mode. Dual-mode operation of the Sr-Yb optical lattice clock is achieved by alternately cooling and trapping $^{87}$Sr and $^{171}$Yb atoms inside the vacuum chamber of the clock. Optical lattices for Sr and Yb atoms were arranged with horizontal and vertical configurations, respectively, resulting in a small distance of the order of 100 $mu$m between the trapped Sr and Yb atoms. The $^{1}$S$_{0}$-$^{3}$P$_{0}$ clock transitions in the trapped atoms were interrogated in turn and the clock lasers were stabilized to the transitions. We demonstrated the frequency ratio measurement of the Sr and Yb clock transitions by using the dual-mode operation of the Sr-Yb optical lattice clock. The dual-mode operation can reduce the uncertainty of the blackbody radiation shift in the frequency ratio measurement, because both Sr and Yb atoms share the same blackbody radiation.
Normal--mode splitting is the most evident signature of strong coupling between two interacting subsystems. It occurs when two subsystems exchange energy between themselves faster than they dissipate it to the environment. Here we experimentally show that a weakly coupled optomechanical system at room temperature can manifest normal--mode splitting when the pump field fluctuations are anti-squashed by a phase-sensitive feedback loop operating close to its instability threshold. Under these conditions the optical cavity exhibits an effectively reduced decay rate, so that the system is effectively promoted to the strong coupling regime.
We experimentally demonstrate a ring geometry all-fiber cavity system for cavity quantum electrodynamics with an ensemble of cold atoms. The fiber cavity contains a nanofiber section which mediates atom-light interactions through an evanescent field. We observe well-resolved, vacuum Rabi splitting of the cavity transmission spectrum in the weak driving limit due to a collective enhancement of the coupling rate by the ensemble of atoms within the evanescent field, and we present a simple theoretical model to describe this. In addition, we demonstrate a method to control and stabilize the resonant frequency of the cavity by utilizing the thermal properties of the nanofiber.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا