ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring Whether Super-Puffs Can Be Explained as Ringed Exoplanets

455   0   0.0 ( 0 )
 نشر من قبل Anthony Piro
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Anthony L. Piro




اسأل ChatGPT حول البحث

An intriguing, growing class of planets are the super-puffs, objects with exceptionally large radii for their masses and thus correspondingly low densities ($lesssim0.3rm,g,cm^{-3}$). Here we consider whether they could have large inferred radii because they are in fact ringed. This would naturally explain why super-puffs have thus far only shown featureless transit spectra. We find that this hypothesis can work in some cases but not all. The close proximity of the super-puffs to their parent stars necessitates rings with a rocky rather than icy composition. This limits the radius of the rings, and makes it challenging to explain the large size of Kepler 51b, 51c, 51d, and 79d unless the rings are composed of porous material. Furthermore, the short tidal locking timescales for Kepler 18d, 223d, and 223e mean that these planets may be spinning too slowly, resulting in a small oblateness and rings that are warped by their parent star. Kepler 87c and 177c have the best chance of being explained by rings. Using transit simulations, we show that testing this hypothesis requires photometry with a precision of somewhere between ~10 ppm and ~50 ppm, which roughly scales with the ratio of the planet and stars radii. We conclude with a note about the recently discovered super-puff HIP 41378f.

قيم البحث

اقرأ أيضاً

131 - Anthony L. Piro 2018
In our solar system, the presence of rings is exclusive to the gas giants, but is this the case for all planetary systems? In principle, it seems that rocky exoplanets could also have rings, which could be searched for by studying their subtle imprin t on the ingress and egress of transits. Unfortunately, such effects are difficult to measure and require high precision photometric and/or spectroscopic observations. At the most basic level though, the presence of rings would result in an increased transit depth that could be mistaken as an anonymously large radius. Motivated by this, I consider how a population of exoplanets with rings would impact radius measurements, focusing on Earth-like exoplanets. It is found that this population introduces an enhancement of inferred radii in the range of $sim2-3R_oplus$, not unlike the sub-Neptunes that have been identified in recent transit surveys. Whether rings can explain all or most sub-Neptunes seems difficult, since it would require a large fraction of rocky planets to have rings ($gtrsim40%$) and/or a factor of $sim2-3$ increase in the number of planets with radii $lesssim1.2R_oplus$. Even if rings cannot explain all sub-Neptunes, this work suggests that focusing on those planets currently classified as sub-Neptunes may be a good starting place for finding rocky planets with rings.
The shape of the ionising spectra of galaxies is a key ingredient to reveal their physical properties and to our understanding of the ionising background radiation. A long-standing unsolved problem is the presence of HeII nebular emission in many low -metallicity star-forming galaxies. This emission requires ionising photons with energy >54 eV, which are not produced in sufficient amounts by normal stellar populations. To examine if high mass X-ray binaries and ultra-luminous X-ray sources (HMXB/ULX) can explain the observed HeII nebular emission and how their presence alters other emission lines, we compute photoionisation models of galaxies including such sources. We combine spectral energy distributions (SEDs) of integrated stellar populations with constrained SEDs of ULXs to obtain composite spectra with varying amounts of X-ray luminosity, parameterised by Lx/SFR. With these we compute photoionisation models to predict the emission line fluxes of the optical recombination lines of H and He+, and the main metal lines of OIII, OII, OI, and NII. The predictions are then compared to a large sample of low-metallicity galaxies. We find that it is possible to reproduce the nebular HeII and other line observations with our spectra and with amounts of Lx/SFR compatible with the observations. Our work suggests that HMBX/ULX could be responsible for the observed nebular HeII emission. However, the strengths of the high and low ionisation lines, such as HeII and OI, depend strongly on the X-ray contribution and on the assumed SEDs of the high energy source(s); the latter are poorly known.
The recent candidate detection of ~1 ppb of phosphine in the middle atmosphere of Venus is so unexpected that it requires an exhaustive search for explanations of its origin. Phosphorus-containing species have not been modelled for Venus atmosphere b efore and our work represents the first attempt to model phosphorus species in the Venusian atmosphere. We thoroughly explore the potential pathways of formation of phosphine in a Venusian environment, including in the planets atmosphere, cloud and haze layers, surface, and subsurface. We investigate gas reactions, geochemical reactions, photochemistry, and other non-equilibrium processes. None of these potential phosphine production pathways are sufficient to explain the presence of ppb phosphine levels on Venus. If PH3s presence in Venus atmosphere is confirmed, it therefore is highly likely to be the result of a process not previously considered plausible for Venusian conditions. The process could be unknown geochemistry, photochemistry, or even aerial microbial life, given that on Earth phosphine is exclusively associated with anthropogenic and biological sources. The detection of phosphine adds to the complexity of chemical processes in the Venusian environment and motivates in situ follow up sampling missions to Venus. Our analysis provides a template for investigation of phosphine as a biosignature on other worlds.
Super-puffs -- low-mass exoplanets with extremely low bulk density -- are attractive targets for exploring their atmospheres and formation processes. Recent studies suggested that the large radii of super-puffs may be caused by atmospheric dust entra ined in the escaping atmospheres. In this study, we investigate how the dust grows in escaping atmospheres and influence the transit radii using a microphysical model of grain growth. Collision growth is efficient in many cases, leading to hinder the upward transport of dust via enhanced gravitational settling. We find that dust abundance in the outflow hardly exceeds the Mach number at the dust production region. Thus, dust formed at upper atmospheres, say $Plesssim{10}^{-5}$ bar, are needed to launch a dusty outflow with high dust abundance. With sufficiently high dust production altitudes and rates, the dusty outflow can enhance the observable radius by a factor of $sim$2 or even more. We suggest that photochemical haze is a promising candidate of high-altitude dust that can be entrained in the outflow. We also compute the synthetic transmission spectra of super-puff atmospheres and demonstrate that the dusty outflow produces a broad spectral slope and obscures molecular features, in agreement with recently reported featureless spectra. Lastly, using an interior structure model, we suggest that the atmospheric dust could drastically enhance the observable radius only for planets in a narrow mass range of $sim2$--$5M_{rm oplus}$, in which the boil-off tends to cause total atmospheric loss. This may explain why super-puffs are uncommon despite the suggested universality of photochemical hazes.
191 - Song Li , Yang Xiao , Jin Min Yang 2021
According to the FNAL+BNL measurements for the muon $g-2$ and the Berkeley $^{133}$Cs measurement for the electron $g-2$, the SM prediction for the muon (electron) $g-2$ is $4.2sigma$ ($2.4sigma$) below (above) the experimental value. A joint explana tion requires a positive contribution to the muon $g-2$ and a negative contribution to the electron $g-2$. In this work we explore the possibility of such a joint explanation in the minimal supersymmetric standard model (MSSM). Assuming no universality between smuon and selectron soft masses, we find out a part of parameter space for a joint explanation of muon and electron $g-2$ anomalies at $2sigma$ level. This part of parameter space can survive the LHC and LEP constraints, but gives an over-abundance for the dark matter if the bino-like lightest neutralino is assumed to be the dark matter candidate. With the assumption that the dark matter candidate is a superWIMP (say a pseudo-goldstino in multi-sector SUSY breaking scenarios, whose mass can be as light as GeV and produced from the late-dacay of the thermally freeze-out lightest neutralino), the dark matter problem can be avoided. So, the MSSM may give a joint explanation for the muon and electron $g-2$ anomalies at $2sigma$ level (the muon $g-2$ anomaly can be ameliorated to $1sigma$).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا