ﻻ يوجد ملخص باللغة العربية
The shape of the ionising spectra of galaxies is a key ingredient to reveal their physical properties and to our understanding of the ionising background radiation. A long-standing unsolved problem is the presence of HeII nebular emission in many low-metallicity star-forming galaxies. This emission requires ionising photons with energy >54 eV, which are not produced in sufficient amounts by normal stellar populations. To examine if high mass X-ray binaries and ultra-luminous X-ray sources (HMXB/ULX) can explain the observed HeII nebular emission and how their presence alters other emission lines, we compute photoionisation models of galaxies including such sources. We combine spectral energy distributions (SEDs) of integrated stellar populations with constrained SEDs of ULXs to obtain composite spectra with varying amounts of X-ray luminosity, parameterised by Lx/SFR. With these we compute photoionisation models to predict the emission line fluxes of the optical recombination lines of H and He+, and the main metal lines of OIII, OII, OI, and NII. The predictions are then compared to a large sample of low-metallicity galaxies. We find that it is possible to reproduce the nebular HeII and other line observations with our spectra and with amounts of Lx/SFR compatible with the observations. Our work suggests that HMBX/ULX could be responsible for the observed nebular HeII emission. However, the strengths of the high and low ionisation lines, such as HeII and OI, depend strongly on the X-ray contribution and on the assumed SEDs of the high energy source(s); the latter are poorly known.
Many upcoming surveys, particularly in the radio and optical domains, are designed to probe either the temporal and/or the spatial variability of a range of astronomical objects. In the light of these high resolution surveys, we review the subject of
The origin of nebular HeII emission, which is frequently observed in low-metallicity (O/H) star-forming galaxies, remains largely an unsolved question. Using the observed anticorrelation of the integrated X-ray luminosity per unit of star formation r
Nebular HeII emission implies the presence of energetic photons (E$ge$54 eV). Despite the great deal of effort dedicated to understanding HeII ionization, its origin has remained mysterious, particularly in metal-deficient star-forming (SF) galaxies.
The nature of ultra-luminous X-ray sources (ULXs), which are off-nuclear extragalactic X-ray sources that exceed the Eddington luminosity for a stellar-mass black hole, is still largely unknown. They might be black hole X-ray binaries in a super-Eddi
It is now widely accepted that most ultraluminous X-ray sources (ULXs) are binary systems whose large (above $10^{39}$ erg s$^{-1}$) apparent luminosities are explained by super-Eddington accretion onto a stellar-mass compact object. Many of the ULXs