ﻻ يوجد ملخص باللغة العربية
Recently, neuro-inspired episodic control (EC) methods have been developed to overcome the data-inefficiency of standard deep reinforcement learning approaches. Using non-/semi-parametric models to estimate the value function, they learn rapidly, retrieving cached values from similar past states. In realistic scenarios, with limited resources and noisy data, maintaining meaningful representations in memory is essential to speed up the learning and avoid catastrophic forgetting. Unfortunately, EC methods have a large space and time complexity. We investigate different solutions to these problems based on prioritising and ranking stored states, as well as online clustering techniques. We also propose a new dynamic online k-means algorithm that is both computationally-efficient and yields significantly better performance at smaller memory sizes; we validate this approach on classic reinforcement learning environments and Atari games.
Deep networks have enabled reinforcement learning to scale to more complex and challenging domains, but these methods typically require large quantities of training data. An alternative is to use sample-efficient episodic control methods: neuro-inspi
Episodic memory-based methods can rapidly latch onto past successful strategies by a non-parametric memory and improve sample efficiency of traditional reinforcement learning. However, little effort is put into the continuous domain, where a state is
We propose K-TanH, a novel, highly accurate, hardware efficient approximation of popular activation function TanH for Deep Learning. K-TanH consists of parameterized low-precision integer operations, such as, shift and add/subtract (no floating point
We introduce a lifelong language learning setup where a model needs to learn from a stream of text examples without any dataset identifier. We propose an episodic memory model that performs sparse experience replay and local adaptation to mitigate ca
We investigate the hardness of online reinforcement learning in fixed horizon, sparse linear Markov decision process (MDP), with a special focus on the high-dimensional regime where the ambient dimension is larger than the number of episodes. Our con