ﻻ يوجد ملخص باللغة العربية
The knowledge of vortex nucleation barriers is crucial for applications of superconductors, such as single-photon detectors and superconductor-based qubits. Contrarily to the problem of finding energy minima and critical fields, there are no controllable methods to explore the energy landscape, identify saddle points, and compute associated barriers. Similar problems exist in high-energy physics where the saddle-point configurations are called sphalerons. Here, we present a generalization of the string method to gauge field theories, which allows the calculation of energy barriers in superconductors. We solve the problem of vortex nucleation, assessing the effects of the nonlinearity of the model, complicated geometry, surface roughness, and pinning.
We consider singly-quantized vortex states in a condensate of 52Cr atoms in a pancake trap. We obtain the vortex solutions by numerically solving the Gross-Pitaevskii equation in the rotating frame with no further approximations. The behavior of the
A theoretical description of the influence of surface irregularities (such as wedge-like cracks) on the Bean-Livingston energy barrier is presented. A careful quantitative estimate of the field of the first vortex entry H* into a homogeneous bulk sup
High-T_c superconductors in small magnetic fields directed away from the crystal symmetry axes have been found to exhibit inhomogeneous chains of flux lines (vortices), in contrast to the usual regular triangular flux-line lattice. We review the expe
We consider excited vortex states, which are vortex states left inside a superconductor once the external applied magnetic field is switched off and whose energy is lower than of the normal state. We show that this state is paramagnetic and develop h
The theoretical and experimental results concerning the thermodynamical and low-frequency transport properties of hybrid structures, consisting of spatially-separated conventional low-temperature superconductor (S) and ferromagnet (F), is reviewed. S