ﻻ يوجد ملخص باللغة العربية
The onset of the era of fully-programmable error-corrected quantum computers will be marked by major breakthroughs in all areas of science and engineering. These devices promise to have significant technological and societal impact, notable examples being the analysis of big data through better machine learning algorithms and the design of new materials. Nevertheless, the capacity of quantum computers to faithfully implement quantum algorithms relies crucially on their ability to prepare specific high-dimensional and high-purity quantum states, together with suitable quantum measurements. Thus, the unambiguous certification of these requirements without assumptions on the inner workings of the quantum computer is critical to the development of trusted quantum processors. One of the most important approaches for benchmarking quantum devices is through the mechanism of self-testing that requires a pair of entangled non-communicating quantum devices. Nevertheless, although computation typically happens in a localized fashion, no local self-testing scheme is known to benchmark high dimensional states and measurements. Here, we show that the quantum self-testing paradigm can be employed to an individual quantum computer that is modelled as a programmable black box by introducing a noise-tolerant certification scheme. We substantiate the applicability of our scheme by providing a family of outcome statistics whose observation certifies that the computer is producing specific high-dimensional quantum states and implementing specific measurements.
We discuss the unique capabilities of programmable logic devices (PLDs) for experimental quantum optics and describe basic procedures of design and implementation. Examples of advanced applications include optical metrology and feedback control of qu
An important problem in quantum information processing is the certification of the dimension of quantum systems without making assumptions about the devices used to prepare and measure them, that is, in a device-independent manner. A crucial question
Local certification consists in assigning labels to the nodes of a network to certify that some given property is satisfied, in such a way that the labels can be checked locally. In the last few years, certification of graph classes received a consid
We study the quantum query complexity of finding a certificate for a d-regular, k-level balanced NAND formula. Up to logarithmic factors, we show that the query complexity is Theta(d^{(k+1)/2}) for 0-certificates, and Theta(d^{k/2}) for 1-certificate
The nonlocal properties of arbitrary dimensional bipartite quantum systems are investigated. A complete set of invariants under local unitary transformations is presented. These invariants give rise to both sufficient and necessary conditions for the