ترغب بنشر مسار تعليمي؟ اضغط هنا

ChartNet: Visual Reasoning over Statistical Charts using MAC-Networks

67   0   0.0 ( 0 )
 نشر من قبل Monika Sharma
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite the improvements in perception accuracies brought about via deep learning, developing systems combining accurate visual perception with the ability to reason over the visual percepts remains extremely challenging. A particular application area of interest from an accessibility perspective is that of reasoning over statistical charts such as bar and pie charts. To this end, we formulate the problem of reasoning over statistical charts as a classification task using MAC-Networks to give answers from a predefined vocabulary of generic answers. Additionally, we enhance the capabilities of MAC-Networks to give chart-specific answers to open-ended questions by replacing the classification layer by a regression layer to localize the textual answers present over the images. We call our network ChartNet, and demonstrate its efficacy on predicting both in vocabulary and out of vocabulary answers. To test our methods, we generated our own dataset of statistical chart images and corresponding question answer pairs. Results show that ChartNet consistently outperform other state-of-the-art methods on reasoning over these questions and may be a viable candidate for applications containing images of statistical charts.

قيم البحث

اقرأ أيضاً

Referring object detection and referring image segmentation are important tasks that require joint understanding of visual information and natural language. Yet there has been evidence that current benchmark datasets suffer from bias, and current sta te-of-the-art models cannot be easily evaluated on their intermediate reasoning process. To address these issues and complement similar efforts in visual question answering, we build CLEVR-Ref+, a synthetic diagnostic dataset for referring expression comprehension. The precise locations and attributes of the objects are readily available, and the referring expressions are automatically associated with functional programs. The synthetic nature allows control over dataset bias (through sampling strategy), and the modular programs enable intermediate reasoning ground truth without human annotators. In addition to evaluating several state-of-the-art models on CLEVR-Ref+, we also propose IEP-Ref, a module network approach that significantly outperforms other models on our dataset. In particular, we present two interesting and important findings using IEP-Ref: (1) the module trained to transform feature maps into segmentation masks can be attached to any intermediate module to reveal the entire reasoning process step-by-step; (2) even if all training data has at least one object referred, IEP-Ref can correctly predict no-foreground when presented with false-premise referring expressions. To the best of our knowledge, this is the first direct and quantitative proof that neural modules behave in the way they are intended.
Vision-and-language (V&L) reasoning necessitates perception of visual concepts such as objects and actions, understanding semantics and language grounding, and reasoning about the interplay between the two modalities. One crucial aspect of visual rea soning is spatial understanding, which involves understanding relative locations of objects, i.e. implicitly learning the geometry of the scene. In this work, we evaluate the faithfulness of V&L models to such geometric understanding, by formulating the prediction of pair-wise relative locations of objects as a classification as well as a regression task. Our findings suggest that state-of-the-art transformer-based V&L models lack sufficient abilities to excel at this task. Motivated by this, we design two objectives as proxies for 3D spatial reasoning (SR) -- object centroid estimation, and relative position estimation, and train V&L with weak supervision from off-the-shelf depth estimators. This leads to considerable improvements in accuracy for the GQA visual question answering challenge (in fully supervised, few-shot, and O.O.D settings) as well as improvements in relative spatial reasoning. Code and data will be released href{https://github.com/pratyay-banerjee/weak_sup_vqa}{here}.
Vision and language tasks have benefited from attention. There have been a number of different attention models proposed. However, the scale at which attention needs to be applied has not been well examined. Particularly, in this work, we propose a n ew method Granular Multi-modal Attention, where we aim to particularly address the question of the right granularity at which one needs to attend while solving the Visual Dialog task. The proposed method shows improvement in both image and text attention networks. We then propose a granular Multi-modal Attention network that jointly attends on the image and text granules and shows the best performance. With this work, we observe that obtaining granular attention and doing exhaustive Multi-modal Attention appears to be the best way to attend while solving visual dialog.
Humans learn to solve tasks of increasing complexity by building on top of previously acquired knowledge. Typically, there exists a natural progression in the tasks that we learn - most do not require completely independent solutions, but can be brok en down into simpler subtasks. We propose to represent a solver for each task as a neural module that calls existing modules (solvers for simpler tasks) in a functional program-like manner. Lower modules are a black box to the calling module, and communicate only via a query and an output. Thus, a module for a new task learns to query existing modules and composes their outputs in order to produce its own output. Our model effectively combines previous skill-sets, does not suffer from forgetting, and is fully differentiable. We test our model in learning a set of visual reasoning tasks, and demonstrate improved performances in all tasks by learning progressively. By evaluating the reasoning process using human judges, we show that our model is more interpretable than an attention-based baseline.
Reverse-engineering bar charts extracts textual and numeric information from the visual representations of bar charts to support application scenarios that require the underlying information. In this paper, we propose a neural network-based method fo r reverse-engineering bar charts. We adopt a neural network-based object detection model to simultaneously localize and classify textual information. This approach improves the efficiency of textual information extraction. We design an encoder-decoder framework that integrates convolutional and recurrent neural networks to extract numeric information. We further introduce an attention mechanism into the framework to achieve high accuracy and robustness. Synthetic and real-world datasets are used to evaluate the effectiveness of the method. To the best of our knowledge, this work takes the lead in constructing a complete neural network-based method of reverse-engineering bar charts.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا