ﻻ يوجد ملخص باللغة العربية
We theoretically investigate a periodically driven semimetal based on a square lattice. The possibility of engineering both Floquet Topological Insulator featuring Floquet edge states and Floquet higher order topological insulating phase, accommodating topological corner modes has been demonstrated starting from the semimetal phase, based on Floquet Hamiltonian picture. Topological phase transition takes place in the bulk quasi-energy spectrum with the variation of the drive amplitude where Chern number changes sign from $+1$ to $-1$. This can be attributed to broken time-reversal invariance ($mathcal{T}$) due to circularly polarized light. When the discrete four-fold rotational symmetry ($mathcal{C}_4$) is also broken by adding a Wilson mass term along with broken $mathcal{T}$, higher order topological insulator (HOTI), hosting in-gap modes at all the corners, can be realized. The Floquet quadrupolar moment, calculated with the Floquet states, exhibits a quantized value of $ 0.5$ (modulo 1) identifying the HOTI phase. We also show the emergence of the {it{dressed corner modes}} at quasi-energy $omega/2$ (remnants of zero modes in the quasi-static high frequency limit), where $omega$ is the driving frequency, in the intermediate frequency regime.
We study the effects of periodic driving on a variant of the Bernevig-Hughes-Zhang (BHZ) model defined on a square lattice. In the absence of driving, the model has both topological and nontopological phases depending on the different parameter value
Higher-order topological insulators are newly proposed topological phases of matter, whose bulk topology manifests as localized modes at two- or higher-dimensional lower boundaries. In this work, we propose the twisted bilayer graphenes with large an
The properties of topological systems are inherently tied to their dimensionality. Higher-dimensional physical systems exhibit topological properties not shared by their lower dimensional counterparts and, in general, offer richer physics. One exampl
High-order topological insulators (TIs) are a family of recently-predicted topological phases of matter obeying an extended topological bulk-boundary correspondence principle. For example, a two-dimensional (2D) second-order TI does not exhibit gaple
Random flux is commonly believed to be incapable of driving metal-insulator transitions. Surprisingly, we show that random flux can after all induce a metal-insulator transition in the two-dimensional Su-Schrieffer-Heeger model, thus reporting the fi