ﻻ يوجد ملخص باللغة العربية
High-order topological insulators (TIs) are a family of recently-predicted topological phases of matter obeying an extended topological bulk-boundary correspondence principle. For example, a two-dimensional (2D) second-order TI does not exhibit gapless one-dimensional (1D) topological edge states, like a standard 2D TI, but instead has topologically-protected zero-dimensional (0D) corner states. So far, higher-order TIs have been demonstrated only in classical mechanical and electromagnetic metamaterials exhibiting quantized quadrupole polarization. Here, we experimentally realize a second-order TI in an acoustic metamaterial. This is the first experimental realization of a new type of higher-order TI, based on a breathing Kagome lattice, that has zero quadrupole polarization but nontrivial bulk topology characterized by quantized Wannier centers (WCs). Unlike previous higher-order TI realizations, the corner states depend not only on the bulk topology but also on the corner shape; we show experimentally that they exist at acute-angled corners of the Kagome lattice, but not at obtuse-angled corners. This shape dependence allows corner states to act as topologically-protected but reconfigurable local resonances.
Itinerant electrons in a two-dimensional Kagome lattice form a Dirac semi-metal, similar to graphene. When lattice and spin symmetries are broken by various periodic perturbations this semi-metal is shown to spawn interesting non-magnetic insulating
Square-root topological insulators are recently-proposed intriguing topological insulators, where the topologically nontrivial nature of Bloch wave functions is inherited from the square of the Hamiltonian. In this paper, we propose that higher-order
Quantum simulators are an essential tool for understanding complex quantum materials. Platforms based on ultracold atoms in optical lattices and photonic devices led the field so far, but electronic quantum simulators are proving to be equally releva
Floquet higher order topological insulators (FHOTIs) are a novel topological phase that can occur in periodically driven lattices. An appropriate experimental platform to realize FHOTIs has not yet been identified. We introduce a periodically-driven
One of the hallmarks of bulk topology is the existence of robust boundary localized states. For instance, a conventional $d$ dimensional topological system hosts $d{-}1$ dimensional surface modes, which are protected by non-spatial symmetries. Recent