ترغب بنشر مسار تعليمي؟ اضغط هنا

Object-Guided Instance Segmentation for Biological Images

323   0   0.0 ( 0 )
 نشر من قبل Jingru Yi
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Instance segmentation of biological images is essential for studying object behaviors and properties. The challenges, such as clustering, occlusion, and adhesion problems of the objects, make instance segmentation a non-trivial task. Current box-free instance segmentation methods typically rely on local pixel-level information. Due to a lack of global object view, these methods are prone to over- or under-segmentation. On the contrary, the box-based instance segmentation methods incorporate object detection into the segmentation, performing better in identifying the individual instances. In this paper, we propose a new box-based instance segmentation method. Mainly, we locate the object bounding boxes from their center points. The object features are subsequently reused in the segmentation branch as a guide to separate the clustered instances within an RoI patch. Along with the instance normalization, the model is able to recover the target object distribution and suppress the distribution of neighboring attached objects. Consequently, the proposed model performs excellently in segmenting the clustered objects while retaining the target object details. The proposed method achieves state-of-the-art performances on three biological datasets: cell nuclei, plant phenotyping dataset, and neural cells.



قيم البحث

اقرأ أيضاً

Few-shot instance segmentation (FSIS) conjoins the few-shot learning paradigm with general instance segmentation, which provides a possible way of tackling instance segmentation in the lack of abundant labeled data for training. This paper presents a Fully Guided Network (FGN) for few-shot instance segmentation. FGN perceives FSIS as a guided model where a so-called support set is encoded and utilized to guide the predictions of a base instance segmentation network (i.e., Mask R-CNN), critical to which is the guidance mechanism. In this view, FGN introduces different guidance mechanisms into the various key components in Mask R-CNN, including Attention-Guided RPN, Relation-Guided Detector, and Attention-Guided FCN, in order to make full use of the guidance effect from the support set and adapt better to the inter-class generalization. Experiments on public datasets demonstrate that our proposed FGN can outperform the state-of-the-art methods.
Instance-level object segmentation is an important yet under-explored task. The few existing studies are almost all based on region proposal methods to extract candidate segments and then utilize object classification to produce final results. Noneth eless, generating accurate region proposals itself is quite challenging. In this work, we propose a Proposal-Free Network (PFN ) to address the instance-level object segmentation problem, which outputs the instance numbers of different categories and the pixel-level information on 1) the coordinates of the instance bounding box each pixel belongs to, and 2) the confidences of different categories for each pixel, based on pixel-to-pixel deep convolutional neural network. All the outputs together, by using any off-the-shelf clustering method for simple post-processing, can naturally generate the ultimate instance-level object segmentation results. The whole PFN can be easily trained in an end-to-end way without the requirement of a proposal generation stage. Extensive evaluations on the challenging PASCAL VOC 2012 semantic segmentation benchmark demonstrate that the proposed PFN solution well beats the state-of-the-arts for instance-level object segmentation. In particular, the $AP^r$ over 20 classes at 0.5 IoU reaches 58.7% by PFN, significantly higher than 43.8% and 46.3% by the state-of-the-art algorithms, SDS [9] and [16], respectively.
In this work, we propose a novel Reversible Recursive Instance-level Object Segmentation (R2-IOS) framework to address the challenging instance-level object segmentation task. R2-IOS consists of a reversible proposal refinement sub-network that predi cts bounding box offsets for refining the object proposal locations, and an instance-level segmentation sub-network that generates the foreground mask of the dominant object instance in each proposal. By being recursive, R2-IOS iteratively optimizes the two sub-networks during joint training, in which the refined object proposals and improved segmentation predictions are alternately fed into each other to progressively increase the network capabilities. By being reversible, the proposal refinement sub-network adaptively determines an optimal number of refinement iterations required for each proposal during both training and testing. Furthermore, to handle multiple overlapped instances within a proposal, an instance-aware denoising autoencoder is introduced into the segmentation sub-network to distinguish the dominant object from other distracting instances. Extensive experiments on the challenging PASCAL VOC 2012 benchmark well demonstrate the superiority of R2-IOS over other state-of-the-art methods. In particular, the $text{AP}^r$ over $20$ classes at $0.5$ IoU achieves $66.7%$, which significantly outperforms the results of $58.7%$ by PFN~cite{PFN} and $46.3%$ by~cite{liu2015multi}.
Automatic instance segmentation is a problem that occurs in many biomedical applications. State-of-the-art approaches either perform semantic segmentation or refine object bounding boxes obtained from detection methods. Both suffer from crowded objec ts to varying degrees, merging adjacent objects or suppressing a valid object. In this work, we assign an embedding vector to each pixel through a deep neural network. The network is trained to output embedding vectors of similar directions for pixels from the same object, while adjacent objects are orthogonal in the embedding space, which effectively avoids the fusion of objects in a crowd. Our method yields state-of-the-art results even with a light-weighted backbone network on a cell segmentation (BBBC006 + DSB2018) and a leaf segmentation data set (CVPPP2017). The code and model weights are public available.
Although deep convolutional neural networks(CNNs) have achieved remarkable results on object detection and segmentation, pre- and post-processing steps such as region proposals and non-maximum suppression(NMS), have been required. These steps result in high computational complexity and sensitivity to hyperparameters, e.g. thresholds for NMS. In this work, we propose a novel end-to-end trainable deep neural network architecture, which consists of convolutional and recurrent layers, that generates the correct number of object instances and their bounding boxes (or segmentation masks) given an image, using only a single network evaluation without any pre- or post-processing steps. We have tested on detecting digits in multi-digit images synthesized using MNIST, automatically segmenting digits in these images, and detecting cars in the KITTI benchmark dataset. The proposed approach outperforms a strong CNN baseline on the synthesized digits datasets and shows promising results on KITTI car detection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا