ﻻ يوجد ملخص باللغة العربية
We propose a novel approach for generating unrestricted adversarial examples by manipulating fine-grained aspects of image generation. Unlike existing unrestricted attacks that typically hand-craft geometric transformations, we learn stylistic and stochastic modifications leveraging state-of-the-art generative models. This allows us to manipulate an image in a controlled, fine-grained manner without being bounded by a norm threshold. Our approach can be used for targeted and non-targeted unrestricted attacks on classification, semantic segmentation and object detection models. Our attacks can bypass certified defenses, yet our adversarial images look indistinguishable from natural images as verified by human evaluation. Moreover, we demonstrate that adversarial training with our examples improves performance of the model on clean images without requiring any modifications to the architecture. We perform experiments on LSUN, CelebA-HQ and COCO-Stuff as high resolution datasets to validate efficacy of our proposed approach.
Traditional adversarial examples are typically generated by adding perturbation noise to the input image within a small matrix norm. In practice, un-restricted adversarial attack has raised great concern and presented a new threat to the AI safety. I
Deep neural networks have been shown to be vulnerable to adversarial examples deliberately constructed to misclassify victim models. As most adversarial examples have restricted their perturbations to $L_{p}$-norm, existing defense methods have focus
Deep learning has come a long way and has enjoyed an unprecedented success. Despite high accuracy, however, deep models are brittle and are easily fooled by imperceptible adversarial perturbations. In contrast to common inference-time attacks, Backdo
Adversarial examples of deep neural networks are receiving ever increasing attention because they help in understanding and reducing the sensitivity to their input. This is natural given the increasing applications of deep neural networks in our ever
Deep neural networks are vulnerable to adversarial examples, which can mislead classifiers by adding imperceptible perturbations. An intriguing property of adversarial examples is their good transferability, making black-box attacks feasible in real-