ترغب بنشر مسار تعليمي؟ اضغط هنا

Rotation of molecular clouds in M~51

85   0   0.0 ( 0 )
 نشر من قبل Jonathan Braine
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The grand-design spiral galaxy M~51 was observed at 40pc resolution in CO(1--0) by the PAWS project. A large number of molecular clouds were identified and we search for velocity gradients in two high signal-to-noise subsamples, containing 682 and 376 clouds. The velocity gradients are found to be systematically prograde oriented, as was previously found for the rather flocculent spiral M~33. This strongly supports the idea that the velocity gradients reflect cloud rotation, rather than more random dynamical forces, such as turbulence. Not only are the gradients prograde, but their $frac{partial v}{partial x}$ and $frac{partial v}{partial y}$ coefficients follow galactic shear in sign, although with a lower amplitude. No link is found between the orientation of the gradient and the orientation of the cloud. The values of the cloud angular momenta appear to be an extension of the values noted for galactic clouds despite the orders of magnitude difference in cloud mass. Roughly 30% of the clouds show retrograde velocity gradients. For a strictly rising rotation curve, as in M~51, gravitational contraction would be expected to yield strictly prograde rotators within an axisymmetric potential. In M~51, the fraction of retrograde rotators is found to be higher in the spiral arms than in the disk as a whole. Along the leading edge of the spiral arms, a majority of the clouds are retrograde rotators. While this work should be continued on other nearby galaxies, the M~33 and M~51 studies have shown that clouds rotate and that they rotate mostly prograde, although the amplitudes are not such that rotational energy is a significant support mechanism against gravitation. In this work, we show that retrograde rotation is linked to the presence of a spiral gravitational potential.



قيم البحث

اقرأ أيضاً

The sample of 566 molecular clouds identified in the CO(2--1) IRAM survey covering the disk of M~33 is explored in detail.The clouds were found using CPROPS and were subsequently catalogued in terms of their star-forming properties as non-star-formin g (A), with embedded star formation (B), or with exposed star formation C.We find that the size-linewidth relation among the M~33 clouds is quite weak but, when comparing with clouds in other nearby galaxies, the linewidth scales with average metallicity.The linewidth and particularly the line brightness decrease with galactocentric distance.The large number of clouds makes it possible to calculate well-sampled cloud mass spectra and mass spectra of subsamples.As noted earlier, but considerably better defined here, the mass spectrum steepens (i.e. higher fraction of small clouds) with galactocentric distance.A new finding is that the mass spectrum of A clouds is much steeper than that of the star-forming clouds.Further dividing the sample, this difference is strong at both large and small galactocentric distances and the A vs C difference is a stronger effect than the inner/outer disk difference in mass spectra.Velocity gradients are identified in the clouds using standard techniques.The gradients are weak and are dominated by prograde rotation; the effect is stronger for the high signal-to-noise clouds.A discussion of the uncertainties is presented.The angular momenta are low but compatible with at least some simulations.The cloud and galactic gradients are similar; the cloud rotation periods are much longer than cloud lifetimes and comparable to the galactic rotation period.The rotational kinetic energy is 1-2% of the gravitational potential energy and the cloud edge velocity is well below the escape velocity, such that cloud-scale rotation probably has little influence on the evolution of molecular clouds.
115 - K. Grasha , D. Calzetti , A. Adamo 2018
We present a study correlating the spatial locations of young star clusters with those of molecular clouds in NGC~5194, in order to investigate the timescale over which clusters separate from their birth clouds. The star cluster catalogues are from t he Legacy ExtraGalactic UV Survey (LEGUS) and the molecular clouds from the Plateau de Bure Interefrometer Arcsecond Whirpool Survey (PAWS). We find that younger star clusters are spatially closer to molecular clouds than older star clusters. The median ages for clusters associated with clouds is 4~Myr whereas it is 50~Myr for clusters that are sufficiently separated from a molecular cloud to be considered unassociated. After $sim$6~Myr, the majority of the star clusters lose association with their molecular gas. Younger star clusters are also preferentially located in stellar spiral arms where they are hierarchically distributed in kpc-size regions for 50-100~Myr before dispersing. The youngest star clusters are more strongly clustered, yielding a two-point correlation function with $alpha=-0.28pm0.04$, than the GMCs ($alpha=-0.09pm0.03$) within the same PAWS field. However, the clustering strength of the most massive GMCs, supposedly the progenitors of the young clusters for a star formation efficiency of a few percent, is comparable ($alpha=-0.35pm0.05$) to that of the clusters. We find a galactocentric-dependence for the coherence of star formation, in which clusters located in the inner region of the galaxy reside in smaller star-forming complexes and display more homogeneous distributions than clusters further from the centre. This result suggests a correlation between the survival of a cluster complex and its environment.
We present sensitive and high angular resolution CO(1-0) data obtained by the Combined Array for Research in Millimeter-wave Astronomy (CARMA) observations toward the nearby grand-design spiral galaxy M 51. The angular resolution of 0.7 corresponds t o 30 pc, which is similar to the typical size of Giant Molecular Clouds (GMCs), and the sensitivity is also high enough to detect typical GMCs. Within the 1 field of view centered on a spiral arm, a number of GMC-scale structures are detected as clumps. However, only a few clumps are found to be associated with each Giant Molecular Association (GMA), and more than 90% of the total flux is resolved out in our data. Considering the high sensitivity and resolution of our data, these results indicate that GMAs are not mere confusion of GMCs but plausibly smooth structures. In addition, we have found that the most massive clumps are located downstream of the spiral arm, which suggests that they are at a later stage of molecular cloud evolution across the arm and plausibly are cores of GMAs. By comparing with H-alpha and Pa-alpha images, most of these cores are found to have nearby star forming regions. We thus propose an evolutionary scenario for the interstellar medium, in which smaller molecular clouds collide to form smooth GMAs at spiral arm regions and then star formation is triggered in the GMA cores. Our new CO data have revealed the internal structure of GMAs at GMC scales, finding the most massive substructures on the downstream side of the arm in close association with the brightest H II regions.
We present Submillimeter Array (SMA) observations of seven massive molecular clumps which are dark in the far-infrared for wavelengths up to 70 $mu$m. Our 1.3 mm continuum images reveal 44 dense cores, with gas masses ranging from 1.4 to 77.1 M$_{odo t}$. Twenty-nine dense cores have masses greater than 8 M$_{odot}$ and the other fifteen dense cores have masses between 1.4 and 7.5 M$_{odot}$. Assuming the core density follows a power-law in radius $rho propto r^{-b}$, the index $b$ is found to be between 0.6 and 2.1 with a mean value of 1.3. The virial analysis reveals that the dense cores are not in virial equilibrium. CO outflow emission was detected toward 6 out of 7 molecular clumps and associated with 17 dense cores. For five of these cores, CO emissions appear to have line-wings at velocities of greater than 30 km s$^{-1}$ with respect to the source systemic velocity, which indicates that most of the clumps harbor protostars and thus are not quiescent in star formation. The estimated outflow timescale increase with core mass, which likely indicates that massive cores have longer accretion timescale than that of the less massive ones. The fragmentation analysis shows that the mass of low-mass and massive cores are roughly consistent with thermal and turbulent Jeans masses, respectively.
326 - Xuefang Xu , Di Li , Y.Sophia Dai 2020
We have analyzed the rotational properties of 12 clumps using $^{13}$CO (1--0) and C$^{18}$O (1--0) maps of the Five College Radio Astronomy Observatory 13.7 m radio telescope. The clumps, located within molecular clouds, have radii ($R$) in the rang e of 0.06 -- 0.27,pc. The direction of clump elongation is not correlated with the direction of the velocity gradient. We measured the specific angular momentum (J/M) to be between 0.0022 and 0.025 pc,km,s$^{-1}$ based on $^{13}$CO images, and between 0.0025 and 0.021 pc,km,s$^{-1}$ based on C$^{18}$O images. The consistency of $J/M$ based on different tracers indicates the $^{13}$CO and C$^{18}$O in dense clumps trace essentially the same material despite significantly different opacities. We also found that $J/M$ increases monotonically as a function of $R$ in power--law form, $J/M~propto~R^{1.58~pm~0.11}$. The ratio between rotation energy and gravitational energy, $beta$, ranges from 0.0012 to 0.018. The small values of $beta$ imply that rotation alone is not sufficient to support the clump against gravitational collapse.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا