ترغب بنشر مسار تعليمي؟ اضغط هنا

Formation of Massive Protostellar Clusters -- Observations of Massive 70 $mu$m Dark Molecular Clouds

121   0   0.0 ( 0 )
 نشر من قبل Shanghuo Li
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Submillimeter Array (SMA) observations of seven massive molecular clumps which are dark in the far-infrared for wavelengths up to 70 $mu$m. Our 1.3 mm continuum images reveal 44 dense cores, with gas masses ranging from 1.4 to 77.1 M$_{odot}$. Twenty-nine dense cores have masses greater than 8 M$_{odot}$ and the other fifteen dense cores have masses between 1.4 and 7.5 M$_{odot}$. Assuming the core density follows a power-law in radius $rho propto r^{-b}$, the index $b$ is found to be between 0.6 and 2.1 with a mean value of 1.3. The virial analysis reveals that the dense cores are not in virial equilibrium. CO outflow emission was detected toward 6 out of 7 molecular clumps and associated with 17 dense cores. For five of these cores, CO emissions appear to have line-wings at velocities of greater than 30 km s$^{-1}$ with respect to the source systemic velocity, which indicates that most of the clumps harbor protostars and thus are not quiescent in star formation. The estimated outflow timescale increase with core mass, which likely indicates that massive cores have longer accretion timescale than that of the less massive ones. The fragmentation analysis shows that the mass of low-mass and massive cores are roughly consistent with thermal and turbulent Jeans masses, respectively.

قيم البحث

اقرأ أيضاً

We observe 1.3~mm spectral lines at 2000~AU resolution toward four massive molecular clouds in the Central Molecular Zone of the Galaxy to investigate their star formation activities. We focus on several potential shock tracers that are usually abund ant in protostellar outflows, including SiO, SO, CH$_3$OH, H$_2$CO, HC$_3$N, and HNCO. We identify 43 protostellar outflows, including 37 highly likely ones and 6 candidates. The outflows are found toward both known high-mass star forming cores and less massive, seemingly quiescent cores, while 791 out of the 834 cores identified based on the continuum do not have detected outflows. The outflow masses range from less than 1~$M_odot$ to a few tens of $M_odot$, with typical uncertainties of a factor of 70. We do not find evidence of disagreement between relative molecular abundances in these outflows and in nearby analogs such as the well-studied L1157 and NGC7538S outflows. The results suggest that i) protostellar accretion disks driving outflows ubiquitously exist in the CMZ environment, ii) the large fraction of candidate starless cores is expected if these clouds are at very early evolutionary phases, with a caveat on the potential incompleteness of the outflows, iii) high-mass and low-mass star formation is ongoing simultaneously in these clouds, and iv) current data do not show evidence of difference between the shock chemistry in the outflows that determines the molecular abundances in the CMZ environment and in nearby clouds.
To study the early phases of massive star formation, we present ALMA observations of SiO(5-4) emission and VLA observations of 6 cm continuum emission towards 32 Infrared Dark Cloud (IRDC) clumps, spatially resolved down to $lesssim 0.05$ pc. Out of the 32 clumps, we detect SiO emission in 20 clumps, and in 11 of them the SiO emission is relatively strong and likely tracing protostellar outflows. Some SiO outflows are collimated, while others are less ordered. For the six strongest SiO outflows, we estimate basic outflow properties. In our entire sample, where there is SiO emission, we find 1.3 mm continuum and infrared emission nearby, but not vice versa. We build the spectral energy distributions (SEDs) of cores with 1.3 mm continuum emission and fit them with radiative transfer (RT) models. The low luminosities and stellar masses returned by SED fitting suggest these are early stage protostars. We see a slight trend of increasing SiO line luminosity with bolometric luminosity, which suggests more powerful shocks in the vicinity of more massive YSOs. We do not see a clear relation between the SiO luminosity and the evolutionary stage indicated by $L/M$. We conclude that as a protostar approaches a bolometric luminosity of $sim 10^2 : L_{odot}$, the shocks in the outflow are generally strong enough to form SiO emission. The VLA 6 cm observations toward the 15 clumps with the strongest SiO emission detect emission in four clumps, which is likely shock ionized jets associated with the more massive ones of these protostellar cores.
Young massive star clusters (YMCs, with M $geq$10$^4$ M$_{odot}$) are proposed modern-day analogues of the globular clusters (GCs) that were products of extreme star formation in the early universe. The exact conditions and mechanisms under which YMC s form remain unknown -- a fact further complicated by the extreme radiation fields produced by their numerous massive young stars. Here we show that GC-sized clusters are naturally produced in radiation-hydrodynamic simulations of isolated 10$^7$ M$_{odot}$ Giant Molecular Clouds (GMCs) with properties typical of the local universe, even under the influence of radiative feedback. In all cases, these massive clusters grow to GC-level masses within 5 Myr via a roughly equal combination of filamentary gas accretion and mergers with several less massive clusters. Lowering the heavy-element abundance of the GMC by a factor of 10 reduces the opacity of the gas to radiation and better represents the high-redshift formation conditions of GCs. This results in higher gas accretion leading to a mass increase of the largest cluster by a factor of ~4. When combined with simulations of less massive GMCs (10$^{4-6}$ M$_{odot}$), a clear relation emerges between the maximum YMC mass and the mass of the host GMC. Our results demonstrate that YMCs, and potentially GCs, are a simple extension of local cluster formation to more massive clouds and do not require suggested exotic formation scenarios.
We study the formation of very metal-poor stars under protostellar radiative feedback effect. We use cosmological simulations to identify low-mass dark matter halos and star-forming gas clouds within them. We then follow protostar formation and the s ubsequent long-term mass accretion phase of over one million years using two-dimensional radiation-hydrodynamics simulations. We show that the critical physical process that sets the final mass is formation and expansion of a bipolar HII region. The process is similar to the formation of massive primordial stars, but radiation pressure exerted on dust grains also contributes to halting the accretion flow in the low-metallicity case. We find that the net feedback effect in the case with metallicity $Z = 10^{-2}~Z_{odot}$ is stronger than in the case with $Z sim 1~Z_{odot}$. With decreasing metallicity, the radiation pressure effect becomes weaker, but photoionization heating of the circumstellar gas is more efficient owing to the reduced dust attenuation. In the case with $Z = 10^{-2}~Z_{odot}$, the central star grows as massive as 200 solar-masses, similarly to the case of primordial star formation. We conclude that metal-poor stars with a few hundred solar masses can be formed by gas accretion despite the strong radiative feedback.
With a mass of $sim$1000 $M_odot$ and a surface density of $sim$0.5 g cm$^{-2}$, G023.477+0.114 also known as IRDC 18310-4 is an infrared dark cloud (IRDC) that has the potential to form high-mass stars and has been recognized as a promising prestell ar clump candidate. To characterize the early stages of high-mass star formation, we have observed G023.477+0.114 as part of the ALMA Survey of 70 $mu$m Dark High-mass Clumps in Early Stages (ASHES). We have conducted $sim$1.2 resolution observations with the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.3 mm in dust continuum and molecular line emission. We identified 11 cores, whose masses range from 1.1 $M_odot$ to 19.0 $M_odot$. Ignoring magnetic fields, the virial parameters of the cores are below unity, implying that the cores are gravitationally bound. However, when magnetic fields are included, the prestellar cores are close to virial equilibrium, while the protostellar cores remain sub-virialized. Star formation activity has already started in this clump. Four collimated outflows are detected in CO and SiO. H$_2$CO and CH$_3$OH emission coincide with the high-velocity components seen in the CO and SiO emission. The outflows are randomly oriented for the natal filament and the magnetic field. The position-velocity diagrams suggest that episodic mass ejection has already begun even in this very early phase of protostellar formation. The masses of the identified cores are comparable to the expected maximum stellar mass that this IRDC could form (8-19 $M_odot$). We explore two possibilities on how IRDC G023.477+0.114 could eventually form high-mass stars in the context of theoretical scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا