ترغب بنشر مسار تعليمي؟ اضغط هنا

Thickness-dependent in-plane polarization and structural phase transition in van der Waals Ferroelectric CuInP2S6

94   0   0.0 ( 0 )
 نشر من قبل Jiawang Hong
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Van der Waals (vdW) layered materials have rather weaker interlayer bonding than the intra-layer bonding, therefore the exfoliation along the stacking direction enables the achievement of monolayer or few layers vdW materials with emerging novel physical properties and functionalities. The ferroelectricity in vdW materials recently attracts renewed interest for the potential use in high-density storage devices. As the thickness going thinner, the competition between the surface energy, depolarization field and interfacial chemical bonds may give rise to the modification of ferroelectricity and crystalline structure, which has limited investigations. In this work, combining the piezoresponse force microscope scanning, contact resonance imaging, we report the existence of the intrinsic in-plane polarization in vdW ferroelectrics CuInP2S6 (CIPS) single crystals, whereas below a critical thickness between 90-100 nm, the in-plane polarization disappears. The Youngs modulus also shows an abrupt stiffness at the critical thickness. Based on the density functional theory calculations, we ascribe these behaviors to a structural phase transition from monoclinic to trigonal structure, which is further verified by transmission electron microscope technique. Taken together, these findings demonstrate the foundational importance of structural phase transition for enhancing the rich functionality and broad utility of vdW ferroelectrics.

قيم البحث

اقرأ أيضاً

Understanding the electronic transport properties of layered, van der Waals transition metal halides (TMHs) and chalcogenides is a highly active research topic today. Of particular interest is the evolution of those properties with changing thickness as the 2D limit is approached. Here, we present the electrical conductivity of exfoliated single crystals of the TMH, cluster magnet, Nb3Cl8, over a wide range of thicknesses both with and without hexagonal boron nitride (hBN) encapsulation. The conductivity is found to increase by more than three orders of magnitude when the thickness is decreased from 280 {mu}m to 5 nm, at 300 K. At low temperatures and below ~50 nm, the conductance becomes thickness independent, implying surface conduction is dominating. Temperature dependent conductivity measurements indicate Nb3Cl8 is an insulator, however the effective activation energy decreases from a bulk value of 310 meV to 140 meV by 5nm. X-ray photoelectron spectroscopy (XPS) shows mild surface oxidation in devices without hBN capping, however, no significant difference in transport is observed when compared to the capped devices, implying the thickness dependent transport behavior is intrinsic to the material. A conduction mechanism comprised of a higher conductivity surface channel in parallel with a lower conductivity interlayer channel is discussed.
Layered indium selenides ($In_{2}Se_{3}$) have recently been discovered to host robust out-of-plane and in-plane ferroelectricity in the $alpha$ and $beta$ phases, respectively. In this work, we utilise angle-resolved photoelectron spectroscopy to di rectly measure the electronic bandstructure of $beta -In_{2}Se_{3}$, and compare to hybrid density functional theory (DFT) calculations. In agreement with DFT, we find the band structure is highly two-dimensional, with negligible dispersion along the c-axis. Due to n-type doping we are able to observe the conduction band minima, and directly measure the minimum indirect (0.97 eV) and direct (1.46 eV) bandgaps. We find the Fermi surface in the conduction band is characterized by anisotropic electron pockets with sharp in-plane dispersion about the $overline{M}$ points, yielding effective masses of 0.21 $m_{0}$ along $overline{KM}$ and 0.33 $m_{0}$ along $overline{Gamma M}$. The measured band structure is well supported by hybrid density functional theory calculations. The highly two-dimensional (2D) bandstructure with moderate bandgap and small effective mass suggest that $beta-In_{2}Se_{3}$ is a potentially useful new van der Waals semiconductor. This together with its ferroelectricity makes it a viable material for high-mobility ferroelectric-photovoltaic devices, with applications in non-volatile memory switching and renewable energy technologies.
Using density functional theory and Monte Carlo calculations, we study the thickness dependence of the magnetic and electronic properties of a van der Waals interlayer antiferromagnet in the two-dimensional limit. Considering $mathrm{MnBi_2Te_4}$ as a model material, we find it to demonstrate a remarkable set of thickness-dependent magnetic and topological transitions. While a single septuple layer block of $mathrm{MnBi_2Te_4}$ is a topologically trivial ferromagnet, the thicker films made of an odd (even) number of blocks are uncompensated (compensated) interlayer antiferromagnets, which show wide bandgap quantum anomalous Hall (zero plateau quantum anomalous Hall) states. Thus, $mathrm{MnBi_2Te_4}$ is the first stoichiometric material predicted to realize the zero plateau quantum anomalous Hall state intrinsically. This state has been theoretically shown to host the exotic axion insulator phase.
The interest in ferroelectric van der Waals crystals arises from the potential to realize ultrathin ferroic systems owing to the reduced surface energy of these materials and the layered structure that allows for exfoliation. Here, we quantitatively unravel giant negative electrostriction of van der Waals layered copper indium thiophosphate (CIPS), which exhibits an electrostrictive coefficient Q33 as high as -3.2 m4/C2 and a resulting bulk piezoelectric coefficient d33 up to -85 pm/V. As a result, the electromechanical response of CIPS is comparable in magnitude to established perovskite ferroelectrics despite possessing a much smaller spontaneous polarization of only a few uC/cm2. In the paraelectric state, readily accessible owing to low transition temperatures, CIPS exhibits large dielectric tunability, similar to widely-used barium strontium titanate, and as a result both giant and continuously tunable electromechanical response. The persistence of electrostrictive and tunable responses in the paraelectric state indicates that even few layer films or nanoparticles will sustain significant electromechanical functionality, offsetting the inevitable suppression of ferroelectric properties in the nanoscale limit. These findings can likely be extended to other ferroelectric transition metal thiophosphates and (quasi-) two-dimensional materials and might facilitate the quest towards novel ultrathin functional devices incorporating electromechanical response.
Heterostructures of atomically thin van der Waals bonded monolayers have opened a unique platform to engineer Coulomb correlations, shaping excitonic, Mott insulating, or superconducting phases. In transition metal dichalcogenide heterostructures, el ectrons and holes residing in different monolayers can bind into spatially indirect excitons with a strong potential for optoelectronics, valleytronics, Bose condensation, superfluidity, and moire-induced nanodot lattices. Yet these ideas require a microscopic understanding of the formation, dissociation, and thermalization dynamics of correlations including ultrafast phase transitions. Here we introduce a direct ultrafast access to Coulomb correlations between monolayers; phase-locked mid-infrared pulses allow us to measure the binding energy of interlayer excitons in WSe2/WS2 hetero-bilayers by revealing a novel 1s-2p resonance, explained by a fully quantum mechanical model. Furthermore, we trace, with subcycle time resolution, the transformation of an exciton gas photogenerated in the WSe2 layer directly into interlayer excitons. Depending on the stacking angle, intra- and interlayer species coexist on picosecond scales and the 1s-2p resonance becomes renormalized. Our work provides a direct measurement of the binding energy of interlayer excitons and opens the possibility to trace and control correlations in novel artificial materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا