ﻻ يوجد ملخص باللغة العربية
Over the past few years, several new methods for scene text recognition have been proposed. Most of these methods propose novel building blocks for neural networks. These novel building blocks are specially tailored for the task of scene text recognition and can thus hardly be used in any other tasks. In this paper, we introduce a new model for scene text recognition that only consists of off-the-shelf building blocks for neural networks. Our model (KISS) consists of two ResNet based feature extractors, a spatial transformer, and a transformer. We train our model only on publicly available, synthetic training data and evaluate it on a range of scene text recognition benchmarks, where we reach state-of-the-art or competitive performance, although our model does not use methods like 2D-attention, or image rectification.
Scene text recognition has been an important, active research topic in computer vision for years. Previous approaches mainly consider text as 1D signals and cast scene text recognition as a sequence prediction problem, by feat of CTC or attention bas
Scene text recognition (STR) task has a common practice: All state-of-the-art STR models are trained on large synthetic data. In contrast to this practice, training STR models only on fewer real labels (STR with fewer labels) is important when we hav
Scene text recognition (STR) is very challenging due to the diversity of text instances and the complexity of scenes. The community has paid increasing attention to boost the performance by improving the pre-processing image module, like rectificatio
In this paper, we address the problem of having characters with different scales in scene text recognition. We propose a novel scale aware feature encoder (SAFE) that is designed specifically for encoding characters with different scales. SAFE is com
Scene text recognition has recently been widely treated as a sequence-to-sequence prediction problem, where traditional fully-connected-LSTM (FC-LSTM) has played a critical role. Due to the limitation of FC-LSTM, existing methods have to convert 2-D