ترغب بنشر مسار تعليمي؟ اضغط هنا

SAFE: Scale Aware Feature Encoder for Scene Text Recognition

130   0   0.0 ( 0 )
 نشر من قبل Wei Liu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we address the problem of having characters with different scales in scene text recognition. We propose a novel scale aware feature encoder (SAFE) that is designed specifically for encoding characters with different scales. SAFE is composed of a multi-scale convolutional encoder and a scale attention network. The multi-scale convolutional encoder targets at extracting character features under multiple scales, and the scale attention network is responsible for selecting features from the most relevant scale(s). SAFE has two main advantages over the traditional single-CNN encoder used in current state-of-the-art text recognizers. First, it explicitly tackles the scale problem by extracting scale-invariant features from the characters. This allows the recognizer to put more effort in handling other challenges in scene text recognition, like those caused by view distortion and poor image quality. Second, it can transfer the learning of feature encoding across different character scales. This is particularly important when the training set has a very unbalanced distribution of character scales, as training with such a dataset will make the encoder biased towards extracting features from the predominant scale. To evaluate the effectiveness of SAFE, we design a simple text recognizer named scale-spatial attention network (S-SAN) that employs SAFE as its feature encoder, and carry out experiments on six public benchmarks. Experimental results demonstrate that S-SAN can achieve state-of-the-art (or, in some cases, extremely competitive) performance without any post-processing.



قيم البحث

اقرأ أيضاً

Scene text recognition has been an important, active research topic in computer vision for years. Previous approaches mainly consider text as 1D signals and cast scene text recognition as a sequence prediction problem, by feat of CTC or attention bas ed encoder-decoder framework, which is originally designed for speech recognition. However, different from speech voices, which are 1D signals, text instances are essentially distributed in 2D image spaces. To adhere to and make use of the 2D nature of text for higher recognition accuracy, we extend the vanilla CTC model to a second dimension, thus creating 2D-CTC. 2D-CTC can adaptively concentrate on most relevant features while excluding the impact from clutters and noises in the background; It can also naturally handle text instances with various forms (horizontal, oriented and curved) while giving more interpretable intermediate predictions. The experiments on standard benchmarks for scene text recognition, such as IIIT-5K, ICDAR 2015, SVP-Perspective, and CUTE80, demonstrate that the proposed 2D-CTC model outperforms state-of-the-art methods on the text of both regular and irregular shapes. Moreover, 2D-CTC exhibits its superiority over prior art on training and testing speed. Our implementation and models of 2D-CTC will be made publicly available soon later.
Recent adversarial learning research has achieved very impressive progress for modelling cross-domain data shifts in appearance space but its counterpart in modelling cross-domain shifts in geometry space lags far behind. This paper presents an innov ative Geometry-Aware Domain Adaptation Network (GA-DAN) that is capable of modelling cross-domain shifts concurrently in both geometry space and appearance space and realistically converting images across domains with very different characteristics. In the proposed GA-DAN, a novel multi-modal spatial learning technique is designed which converts a source-domain image into multiple images of different spatial views as in the target domain. A new disentangled cycle-consistency loss is introduced which balances the cycle consistency in appearance and geometry spaces and improves the learning of the whole network greatly. The proposed GA-DAN has been evaluated for the classic scene text detection and recognition tasks, and experiments show that the domain-adapted images achieve superior scene text detection and recognition performance while applied to network training.
Text recognition is a popular topic for its broad applications. In this work, we excavate the implicit task, character counting within the traditional text recognition, without additional labor annotation cost. The implicit task plays as an auxiliary branch for complementing the sequential recognition. We design a two-branch reciprocal feature learning framework in order to adequately utilize the features from both the tasks. Through exploiting the complementary effect between explicit and implicit tasks, the feature is reliably enhanced. Extensive experiments on 7 benchmarks show the advantages of the proposed methods in both text recognition and the new-built character counting tasks. In addition, it is convenient yet effective to equip with variable networks and tasks. We offer abundant ablation studies, generalizing experiments with deeper understanding on the tasks. Code is available.
Scene text recognition (STR) task has a common practice: All state-of-the-art STR models are trained on large synthetic data. In contrast to this practice, training STR models only on fewer real labels (STR with fewer labels) is important when we hav e to train STR models without synthetic data: for handwritten or artistic texts that are difficult to generate synthetically and for languages other than English for which we do not always have synthetic data. However, there has been implicit common knowledge that training STR models on real data is nearly impossible because real data is insufficient. We consider that this common knowledge has obstructed the study of STR with fewer labels. In this work, we would like to reactivate STR with fewer labels by disproving the common knowledge. We consolidate recently accumulated public real data and show that we can train STR models satisfactorily only with real labeled data. Subsequently, we find simple data augmentation to fully exploit real data. Furthermore, we improve the models by collecting unlabeled data and introducing semi- and self-supervised methods. As a result, we obtain a competitive model to state-of-the-art methods. To the best of our knowledge, this is the first study that 1) shows sufficient performance by only using real labels and 2) introduces semi- and self-supervised methods into STR with fewer labels. Our code and data are available: https://github.com/ku21fan/STR-Fewer-Labels
Over the past few years, several new methods for scene text recognition have been proposed. Most of these methods propose novel building blocks for neural networks. These novel building blocks are specially tailored for the task of scene text recogni tion and can thus hardly be used in any other tasks. In this paper, we introduce a new model for scene text recognition that only consists of off-the-shelf building blocks for neural networks. Our model (KISS) consists of two ResNet based feature extractors, a spatial transformer, and a transformer. We train our model only on publicly available, synthetic training data and evaluate it on a range of scene text recognition benchmarks, where we reach state-of-the-art or competitive performance, although our model does not use methods like 2D-attention, or image rectification.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا