ﻻ يوجد ملخص باللغة العربية
For a pointed topological space $X$, we use an inductive construction of a simplicial resolution of $X$ by wedges of spheres to construct a higher homotopy structure for $X$ (in terms of chain complexes of spaces). This structure is then used to define a collection of higher homotopy invariants which suffice to recover $X$ up to weak equivalence. It can also be used to distinguish between different maps $f$ from $X$ to $Y$ which induce the same morphism on homotopy groups $f_*$ from $pi_* X$ to $pi_* Y$.
We explain how higher homotopy operations, defined topologically, may be identified under mild assumptions with (the last of) the Dwyer-Kan-Smith cohomological obstructions to rectifying homotopy-commutative diagrams.
This paper explores the relation between the structure of fibre bundles akin to those associated to a closed almost nonnegatively sectionally curved manifold and rational homotopy theory.
We show the non-existence results are essential for all the previous known applications of the Bauer-Furuta stable homotopy Seiberg-Witten invariants. As an example, we present a unified proof of the adjunction inequalities. We also show that the n
There are two main approaches to the problem of realizing a $Pi$-algebra (a graded group $Lambda$ equipped with an action of the primary homotopy operations) as the homotopy groups of a space $X$. Both involve trying to realize an algebraic free simp
We develop foundations for the category theory of $infty$-categories parametrized by a base $infty$-category. Our main contribution is a theory of indexed homotopy limits and colimits, which specializes to a theory of $G$-colimits for $G$ a finite gr