ﻻ يوجد ملخص باللغة العربية
There are two main approaches to the problem of realizing a $Pi$-algebra (a graded group $Lambda$ equipped with an action of the primary homotopy operations) as the homotopy groups of a space $X$. Both involve trying to realize an algebraic free simplicial resolution $G_bullet$ of $Lambda$ by a simplicial space $W_bullet$ and proceed by induction on the simplicial dimension. The first provides a sequence of Andr{e}-Quillen cohomology classes in $H_{AQ}^{n+2}(Lambda;Omega^{n}Lambda)$ for $n geq 1$ as obstructions to the existence of successive Postnikov sections for $W_bullet$ by work of Dwyer, Kan and Stover. The second gives a sequence of geometrically defined higher homotopy operations as the obstructions by earlier work of Blanc; these were identified with the obstruction theory of Dwyer, Kan and Smith in earlier work of the current authors. There are also (algebraic and geometric) obstructions for distinguishing between different realizations of $Lambda$. In this paper we 1) provide an explicit construction of the cocycles representing the cohomology obstructions; 2) provide a similar explicit construction of certain minimal values of the higher homotopy operations (which reduce to long Toda brackets), and 3) show that these two constructions correspond under an evident map.
We explain how higher homotopy operations, defined topologically, may be identified under mild assumptions with (the last of) the Dwyer-Kan-Smith cohomological obstructions to rectifying homotopy-commutative diagrams.
In this paper we provide an explicit general construction of higher homotopy operations in model categories, which include classical examples such as (long) Toda brackets and (iterated) Massey products, but also cover unpointed operations not usually
We discuss an approach to the emph{covering} and emph{vanishing} theorems for the comparison map from bounded cohomology to singular cohomology, based on the observation that the comparison map is the coassembly map for bounded cohomology.
We construct a natural transformation from the Bousfield-Kuhn functor evaluated on a space to the Topological Andre-Quillen cohomology of the K(n)-local Spanier-Whitehead dual of the space, and show that the map is an equivalence in the case where th
Eilenberg-MacLane spaces, that classify the singular cohomology groups of topological spaces, admit natural constructions in the framework of simplicial sets. The existence of similar spaces for the intersection cohomology groups of a stratified spac