ﻻ يوجد ملخص باللغة العربية
Decentralisation is one of the promises introduced by blockchain technologies: fair and secure interaction amongst peers with no dominant positions, single points of failure or censorship. Decentralisation, however, appears difficult to be formally defined, possibly a continuum property of systems that can be more or less decentralised, or can tend to decentralisation in their lifetime. In this paper we focus on decentralisation in quorum-based approaches to open (permissionless) consensus as illustrated in influential protocols such as the Ripple and Stellar protocols. Drawing from game theory and computational complexity, we establish limiting results concerning the decentralisation vs. safety trade-off in Ripple and Stellar, and we propose a novel methodology to formalise and quantitatively analyse decentralisation in this type of blockchains.
Communication is a key bottleneck in distributed training. Recently, an emph{error-compensated} compression technology was particularly designed for the emph{centralized} learning and receives huge successes, by showing significant advantages over st
Large scale power systems are comprised of regional utilities with IIoT enabled assets that stream sensor readings in real time. In order to detect cyberattacks, the globally acquired, real time sensor data needs to be analyzed in a centralized fashi
Problems of cooperation--in which agents seek ways to jointly improve their welfare--are ubiquitous and important. They can be found at scales ranging from our daily routines--such as driving on highways, scheduling meetings, and working collaborativ
Graphical models have been widely applied in solving distributed inference problems in sensor networks. In this paper, the problem of coordinating a network of sensors to train a unique ensemble estimator under communication constraints is discussed.
This paper introduces a modeling framework for distributed regression with agents/experts observing attribute-distributed data (heterogeneous data). Under this model, a new algorithm, the iterative covariance optimization algorithm (ICOA), is designe