ترغب بنشر مسار تعليمي؟ اضغط هنا

Blockchain Based Decentralized Cyber Attack Detection for Large Scale Power Systems

79   0   0.0 ( 0 )
 نشر من قبل Paritosh Ramanan
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Large scale power systems are comprised of regional utilities with IIoT enabled assets that stream sensor readings in real time. In order to detect cyberattacks, the globally acquired, real time sensor data needs to be analyzed in a centralized fashion. However, owing to operational constraints, such a centralized sharing mechanism turns out to be a major obstacle. In this paper, we propose a blockchain based decentralized framework for detecting coordinated replay attacks with full privacy of sensor data. We develop a Bayesian inference mechanism employing locally reported attack probabilities that is tailor made for a blockchain framework. We compare our framework to a traditional decentralized algorithm based on the broadcast gossip framework both theoretically as well as empirically. With the help of experiments on a private Ethereum blockchain, we show that our approach achieves good detection quality and significantly outperforms gossip driven approaches in terms of accuracy, timeliness and scalability.



قيم البحث

اقرأ أيضاً

310 - Wei Feng , Jingjin Wu , Chen Yuan 2019
This paper proposes a graph computation based sequential power flow calculation method for Line Commutated Converter (LCC) based large-scale AC/DC systems to achieve a high computing performance. Based on the graph theory, the complex AC/DC system is first converted to a graph model and stored in a graph database. Then, the hybrid system is divided into several isolated areas with graph partition algorithm by decoupling AC and DC networks. Thus, the power flow analysis can be executed in parallel for each independent area with the new selected slack buses. Furthermore, for each area, the node-based parallel computing (NPC) and hierarchical parallel computing (HPC) used in graph computation are employed to speed up fast decoupled power flow (FDPF). Comprehensive case studies on the IEEE 300-bus, polished South Carolina 12,000-bus system and a China 11,119-bus system are performed to demonstrate the accuracy and efficiency of the proposed method
Activity-tracking applications and location-based services using short-range communication (SRC) techniques have been abruptly demanded in the COVID-19 pandemic, especially for automated contact tracing. The attention from both public and policy keep s raising on related practical problems, including textit{1) how to protect data security and location privacy? 2) how to efficiently and dynamically deploy SRC Internet of Thing (IoT) witnesses to monitor large areas?} To answer these questions, in this paper, we propose a decentralized and permissionless blockchain protocol, named textit{Bychain}. Specifically, 1) a privacy-preserving SRC protocol for activity-tracking and corresponding generalized block structure is developed, by connecting an interactive zero-knowledge proof protocol and the key escrow mechanism. As a result, connections between personal identity and the ownership of on-chain location information are decoupled. Meanwhile, the owner of the on-chain location data can still claim its ownership without revealing the private key to anyone else. 2) An artificial potential field-based incentive allocation mechanism is proposed to incentivize IoT witnesses to pursue the maximum monitoring coverage deployment. We implemented and evaluated the proposed blockchain protocol in the real-world using the Bluetooth 5.0. The storage, CPU utilization, power consumption, time delay, and security of each procedure and performance of activities are analyzed. The experiment and security analysis is shown to provide a real-world performance evaluation.
95 - Junyao Guo , Gabriela Hug , 2016
Distributed optimization for solving non-convex Optimal Power Flow (OPF) problems in power systems has attracted tremendous attention in the last decade. Most studies are based on the geographical decomposition of IEEE test systems for verifying the feasibility of the proposed approaches. However, it is not clear if one can extrapolate from these studies that those approaches can be applied to very large-scale real-world systems. In this paper, we show, for the first time, that distributed optimization can be effectively applied to a large-scale real transmission network, namely, the Polish 2383-bus system for which no pre-defined partitions exist, by using a recently developed partitioning technique. More specifically, the problem solved is the AC OPF problem with geographical decomposition of the network using the Alternating Direction Method of Multipliers (ADMM) method in conjunction with the partitioning technique. Through extensive experimental results and analytical studies, we show that with the presented partitioning technique the convergence performance of ADMM can be improved substantially, which enables the application of distributed approaches on very large-scale systems.
Transactive Energy Systems (TES) are modern mechanisms in electric power systems that allow disparate control agents to utilize distributed generation units (DGs) to engage in energy transactions and provide ancillary services to the grid. Although v oltage regulation is a crucial ancillary service within active distribution networks (ADNs), previous work has not adequately explored how this service can be offered in terms of its incentivization, contract auditability and enforcement. Blockchain technology shows promise in being a key enabler of TES, allowing agents to engage in trustless, persistent transactions that are both enforceable and auditable. To that end, this paper proposes a blockchain based TES that enables agents to receive incentives for providing voltage regulation services by i) maintaining an auditable reputation rating for each agent that is increased proportionately with each mitigation of a voltage violation, ii) utilizing smart contracts to enforce the validity of each transaction and penalize reputation ratings in case of a mitigation failure and iii) automating the negotiation and bidding of agent services by implementing the contract net protocol (CNP) as a smart contract. Experimental results on both simulated and real-world ADNs are executed to demonstrate the efficacy of the proposed system.
Existing coordinated cyber-attack detection methods have low detection accuracy and efficiency and poor generalization ability due to difficulties dealing with unbalanced attack data samples, high data dimensionality, and noisy data sets. This paper proposes a model for cyber and physical data fusion using a data link for detecting attacks on a Cyber-Physical Power System (CPPS). Two-step principal component analysis (PCA) is used for classifying the systems operating status. An adaptive synthetic sampling algorithm is used to reduce the imbalance in the categories samples. The loss function is improved according to the feature intensity difference of the attack event, and an integrated classifier is established using a classification algorithm based on the cost-sensitive gradient boosting decision tree (CS-GBDT). The simulation results show that the proposed method provides higher accuracy, recall, and F-Score than comparable algorithms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا