ترغب بنشر مسار تعليمي؟ اضغط هنا

Unveiling Sizes of Compact AGN Hosts with ALMA

75   0   0.0 ( 0 )
 نشر من قبل Yu-Yen Chang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present rest-frame far-infrared (FIR) and optical size measurements of AGN hosts and star-forming galaxies in the COSMOS field, enabled by high-resolution ALMA/1 mm (0.1 arcsec - 0.4 arcsec) and HST/F814W imaging (~ 0.1 arcsec). Our sample includes 27 galaxies at z<2.5, classified as infrared-selected AGN (3 sources), X-ray selected AGN (4 sources), and non-AGN star-forming galaxies (20 sources), for which high-resolution Band 6/7 ALMA images are available at 1 mm from our own observing program as well as archival observations. The sizes and SFR surface densities measured from both ALMA/1 mm and HST/F814W images show that obscured AGN host galaxies are more compact than non-AGN star-forming galaxies at similar redshift and stellar mass. This result suggests that the obscured accretion phase may be related to galaxies experiencing a compaction of their gaseous component, which could be associated with enhanced central star formation before a subsequent quenching driving the formation of compact passive galaxies. Moreover, most of the detected and stacked rest-frame FIR sizes of AGNs in our sample are similar or more compact than their rest-frame optical sizes, which is consistent with recent results of ALMA detected sources. This might be explained by the fact that the dusty starbursts take place in the compact regions, and suggests that the star formation mechanisms in the compact regions of AGN hosts are similar to those observed in star-forming galaxies observed with ALMA.



قيم البحث

اقرأ أيضاً

Sub/millimiter observations of dusty star-forming galaxies with ALMA have shown that the dust continuum emission occurs generally in compact regions smaller than the stellar distribution. However, it remains to be understood how systematic these find ings are, as they often lack of homogeneity in the sample selection, target discontinuous areas with inhomogeneous sensitivities, and suffer from modest $uv$-coverage coming from single array configurations. GOODS-ALMA is a 1.1 mm galaxy survey over a continuous area of 72.42 arcmin$^2$ at a homogeneous sensitivity. In this version 2.0, we present a new low-resolution dataset and its combination with the previous high-resolution dataset from Franco et al. (2018), improving the $uv$-coverage and sensitivity reaching an average of $sigma = 68.4$ $mu$Jy beam$^{-1}$. A total of 88 galaxies are detected in a blind search (compared to 35 in the high-resolution dataset alone), 50% at $rm{S/N_{peak}} geq 5$ and 50% at $3.5 leq rm{S/N_{peak}} leq 5$ aided by priors. Among them, 13/88 are optically dark/faint sources ($H$ or $K$-band dropouts). The sample dust continuum sizes at 1.1 mm are generally compact, with a median effective radius of $R_{rm{e}} = 010 pm 005$ (physical size of $R_{rm{e}} = 0.73 pm 0.29$ kpc, at the redshift of each source). Dust continuum sizes evolve with redshift and stellar mass resembling the trends of the stellar sizes measured at optical wavelengths, albeit a lower normalization compared to those of late-type galaxies. We conclude that for sources with flux densities $S_{rm{1.1mm}} > 1$ mJy compact dust continuum emission at 1.1 mm prevails, and sizes as extended as typical star-forming stellar disks are rare. $S_{rm{1.1mm}} < 1$ mJy sources appear slightly more extended at 1.1 mm, although still generally compact below the sizes of typical star-forming stellar disks.
133 - D. Kakkad , V. Mainieri , M. Brusa 2017
Similarly to the cosmic star formation history, the black hole accretion rate density of the Universe peaked at 1<z<3. This cosmic epoch is hence best suited for investigating the effects of radiative feedback from AGN. Observational efforts are unde rway to quantify the impact of AGN feedback, if any, on their host galaxies. Here we present a study of the molecular gas content of AGN hosts at z~1.5 using CO[2-1] line emission observed with ALMA for a sample of 10 AGNs. We compare this with a sample of galaxies without an AGN matched in redshift, stellar mass, and star formation rate. We detect CO in 3 AGNs with $mathrm{L_{CO} sim 6.3-25.1times 10^{9} L_{odot}}$ which translates to a molecular hydrogen gas mass of $mathrm{2.5-10times 10^{10} M_{odot}}$ assuming conventional conversion factor of $mathrm{alpha_{CO}}sim3.6$. Our results indicate a >99% probability of lower depletion time scales and lower molecular gas fractions in AGN hosts with respect to the non-AGN comparison sample. We discuss the implications of these observations on the impact that AGN feedback may have on star formation efficiency of z>1 galaxies.
51 - Soh Ikarashi 2017
We report the study of far-IR sizes of submillimeter galaxies (SMGs) in relation to their dust-obscured star formation rate (SFR) and active galactic nuclei (AGN) presence, determined using mid-IR photometry. We determined the millimeter-wave ($lambd a_{rm obs}=1100 mu$m) sizes of 69 ALMA-identified SMGs, selected with $geq10$$sigma$ confidence on ALMA images ($F_{rm 1100 mu m}=1.7$--7.4 mJy). We found that all the SMGs are located above an avoidance region in the millimeter size-flux plane, as expected by the Eddington limit for star formation. In order to understand what drives the different millimeter-wave sizes in SMGs, we investigated the relation between millimeter-wave size and AGN fraction for 25 of our SMGs at $z=1$--3. We found that the SMGs for which the mid-IR emission is dominated by star formation or AGN have extended millimeter-sizes, with respective median $R_{rm c,e} = 1.6^{+0.34}_{-0.21}$ and 1.5$^{+0.93}_{-0.24}$ kpc. Instead, the SMGs for which the mid-IR emission corresponds to star-forming/AGN composites have more compact millimeter-wave sizes, with median $R_{rm c,e}=1.0^{+0.20}_{-0.20}$ kpc. The relation between millimeter-wave size and AGN fraction suggests that this size may be related to the evolutionary stage of the SMG. The very compact sizes for composite star-forming/AGN systems could be explained by supermassive black holes growing rapidly during the SMG coalescing, star-formation phase.
260 - T. Bitsakis 2014
We present a Herschel far-IR and sub-mm study of a sample of 120 galaxies in 28 Hickson Compact Groups. Fitting their UV to sub-mm spectral energy distributions with the model of da Cunha et al. (2008), we accurately estimate the dust masses, luminos ities and temperatures of the individual galaxies. We find that nearly half of the late-type galaxies in dynamically old groups, those with more than 25% of early-type members and redder UV-optical colours, have also significantly lower dust-to-stellar mass ratios compared to those of actively star-forming galaxies of the same mass found both in HCGs and the field. Examining their dust-to-gas mass ratios we conclude that dust was stripped out of these systems as a result of the gravitational and hydrodynamic interactions, experienced due to previous encounters with other group members. About 40% of the early-type galaxies (mostly lenticulars), in dynamically old groups, display dust properties similar to those of the UV-optical red late-type galaxies. Given their stellar masses, star formation rates and UV-optical colours, we suggest that red late-type and dusty lenticular galaxies represent transition populations between blue star-forming disk galaxies and quiescent early-type ellipticals. [...ABRIDGED...] Our deep Herschel observations also allow us to detect the presence of diffuse cold intragroup dust in 4 HCGs. We also find that the fraction of 250micron emission which is located outside of the main bodies of the red late-type galaxies as well as of the dusty lenticulars is 15-20% of their integrated emission at this band. All these findings are consistent with an evolutionary scenario in which gas dissipation, shocks and turbulence in addition to tidal interactions, shape the evolution of galaxies in compact groups.
We report the detection in IRC+10216 of lines of HNC $J$=3-2 pertaining to 9 excited vibrational states with energies up to $sim$5300 K. The spectrum, observed with ALMA, also shows a surprising large number of narrow, unidentified lines that arise i n the vicinity of the star. The HNC data are interpreted through a 1D--spherical non--local radiative transfer model, coupled to a chemical model that includes chemistry at thermochemical equilibrium for the innermost regions and reaction kinetics for the external envelope. Although unresolved by the present early ALMA data, the radius inferred for the emitting region is $sim$0.06 (i.e., $simeq$ 3 stellar radii), similar to the size of the dusty clumps reported by IR studies of the innermost region ($r <$ 0.3). The derived abundance of HNC relative to H$_2$ is $10^{-8} <$ $chi$(HNC) $< 10^{-6}$, and drops quickly where the gas density decreases and the gas chemistry is dominated by reaction kinetics. Merging HNC data with that of molecular species present throughout the inner envelope, such as vibrationally excited HCN, SiS, CS, or SiO, should allow us to characterize the physical and chemical conditions in the dust formation zone.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا