ترغب بنشر مسار تعليمي؟ اضغط هنا

Unveiling the dust nucleation zone of IRC+10216 with ALMA

227   0   0.0 ( 0 )
 نشر من قبل Fabien Daniel
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection in IRC+10216 of lines of HNC $J$=3-2 pertaining to 9 excited vibrational states with energies up to $sim$5300 K. The spectrum, observed with ALMA, also shows a surprising large number of narrow, unidentified lines that arise in the vicinity of the star. The HNC data are interpreted through a 1D--spherical non--local radiative transfer model, coupled to a chemical model that includes chemistry at thermochemical equilibrium for the innermost regions and reaction kinetics for the external envelope. Although unresolved by the present early ALMA data, the radius inferred for the emitting region is $sim$0.06 (i.e., $simeq$ 3 stellar radii), similar to the size of the dusty clumps reported by IR studies of the innermost region ($r <$ 0.3). The derived abundance of HNC relative to H$_2$ is $10^{-8} <$ $chi$(HNC) $< 10^{-6}$, and drops quickly where the gas density decreases and the gas chemistry is dominated by reaction kinetics. Merging HNC data with that of molecular species present throughout the inner envelope, such as vibrationally excited HCN, SiS, CS, or SiO, should allow us to characterize the physical and chemical conditions in the dust formation zone.



قيم البحث

اقرأ أيضاً

Linear carbon chains are common in various types of astronomical molecular sources. Possible formation mechanisms involve both bottom-up and top-down routes. We have carried out a combined observational and modeling study of the formation of carbon c hains in the C-star envelope IRC+10216, where the polymerization of acetylene and hydrogen cyanide induced by ultraviolet photons can drive the formation of linear carbon chains of increasing length. We have used ALMA to map the emission of 3 mm rotational lines of the hydrocarbon radicals C2H, C4H, and C6H, and the CN-containing species CN, C3N, HC3N, and HC5N with an angular resolution of 1. The spatial distribution of all these species is a hollow, 5-10 wide, spherical shell located at a radius of 10-20 from the star, with no appreciable emission close to the star. Our observations resolve the broad shell of carbon chains into thinner sub-shells which are 1-2 wide and not fully concentric, indicating that the mass loss process has been discontinuous and not fully isotropic. The radial distributions of the species mapped reveal subtle differences: while the hydrocarbon radicals have very similar radial distributions, the CN-containing species show more diverse distributions, with HC3N appearing earlier in the expansion and the radical CN extending later than the rest of the species. The observed morphology can be rationalized by a chemical model in which the growth of polyynes is mainly produced by rapid gas-phase chemical reactions of C2H and C4H radicals with unsaturated hydrocarbons, while cyanopolyynes are mainly formed from polyynes in gas-phase reactions with CN and C3N radicals.
The interstellar medium is enriched primarily by matter ejected from evolved low and intermediate mass stars. The outflows from these stars create a circumstellar envelope in which a rich gas-phase and dust-nucleation chemistry takes place. We observ ed the nearest carbon-rich evolved star, IRC+10216, using the PACS (55-210 {mu}m) and SPIRE (194-672 {mu}m) spectrometers on board Herschel. We find several tens of lines from SiS and SiO, including lines from the v=1 vibrational level. For SiS these transitions range up to J=124-123, corresponding to energies around 6700K, while the highest detectable transition is J=90-89 for SiO, which corresponds to an energy around 8400K. Both species trace the dust formation zone of IRC+10216, and the broad energy ranges involved in their detected transitions permit us to derive the physical properties of the gas and the particular zone in which each species has been formed. This allows us to check the accuracy of chemical thermodynamical equilibrium models and the suggested depletion of SiS and SiO due to accretion onto dust grains.
We present low spectral resolution molecular interferometric observations at 1.2 mm obtained with the Combined Array for Research in Millimetre-wave Astronomy (CARMA) towards the C-rich AGB star IRC+10216. We have mapped the emission of several lines of SiS, H13CN, SiO, and SiC2 in the ground and first excited vibrational states with a high angular resolution of 0.25 arcsec. These observations have allowed us to partially resolve the emission of the envelope at distances from the star <50 stellar radii (R*), where the stellar wind is mainly accelerated. The structure of the molecular emission has been modelled with a 3D radiation transfer code. The emission of line SiS(v=0,J=14-13) is best reproduced with a set of maser emitting arcs arranged between 5 and 20 R*. The abundance of H13CN with respect to H2 decreases from 8e-7 at 1-5 R* to 3e-7 at 20 R*. The SiO observations are explained with an abundance <2e-8 in the shell-like region between 1 and 5 R*. At this point, the SiO abundance sharply increases up to (2-3)e-7. The vibrational temperature of SiO increases by a factor of 2 due North-East between 20 and 50 R*. SiC2 is formed at the stellar surface with an abundance of 8e-7 decreasing down to 8e-8 at 20 R* probably due to depletion on to dust grains. Several asymmetries are found in the abundance distributions of H13CN, SiO, and SiC2 which define three remarkable directions (North-East, South-Southwest, and South-East) in the explored region of the envelope. There are some differences between the red- and blue-shifted emissions of these molecules suggesting the existence of additional asymmetries in their abundance distributions along the line-of-sight.
63 - R. Osterbart 2000
We present high-resolution J-, H-, and K-band observations of the carbon star IRC+10216. The images were reconstructed from 6 m telescope speckle interferograms using the bispectrum speckle interferometry method. The H and K images consist of several compact components within a 0.2 radius and a fainter asymmetric nebula. The brightest four components are denoted with A to D in the order of decreasing brightness. A comparison of our images gives - almost like a movie of five frames - insight to the dynamical evolution of the inner nebula. For instance, the separation of the two brightest components A and B increased by almost 40% from 191 mas in 1995 to 265 mas in 1998. At the same time, component B is fading and the components C and D become brighter. The X-shaped bipolar structure of the nebula implies an asymmetric mass-loss suggesting that IRC+10216 is very advanced in its AGB evolution, shortly before turning into a protoplanetary nebula. The cometary shape of component A suggests that the core of A is not the central star, but the southern lobe of a bipolar structure. The position of the central star is probably at or near the position of component B.
A new chemical model is presented for the carbon-rich circumstellar envelope of the AGB star IRC+10216. The model includes shells of matter with densities that are enhanced relative to the surrounding circumstellar medium. The chemical model uses an updated reaction network including reactions from the RATE06 database and a more detailed anion chemistry. In particular, new mechanisms are considered for the formation of CN-, C3N- and C2H-, and for the reactions of hydrocarbon anions with atomic nitrogen and with the most abundant cations in the circumstellar envelope. New reactions involving H- are included which result in the production of significant amounts of C2H- and CN- in the inner envelope. The calculated radial molecular abundance profiles for the hydrocarbons C2H, C4H and C6H and the cyanopolyynes HC3N and HC5N show narrow peaks which are in better agreement with observations than previous models. Thus, the narrow rings observed in molecular microwave emission surrounding IRC+10216 are interpreted as arising in regions of the envelope where the gas and dust densities are greater than the surrounding circumstellar medium. Our models show that CN- and C2H- may be detectable in IRC+10216 despite the very low theorised radiative electron attachment rates of their parent neutral species. We also show that magnesium isocyanide (MgNC) can be formed in the outer envelope through radiative association involving Mg+ and the cyanopolyyne species.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا