ﻻ يوجد ملخص باللغة العربية
We discuss quantum state tomography via a stepwise reconstruction of the eigenstates of the mixed states produced in experiments. Our method is tailored to the experimentally relevant class of nearly pure states or simple mixed states, which exhibit dominant eigenstates and thus lend themselves to low-rank approximations. The developed scheme is applicable to any pure-state tomography method, promoting it to mixed-state tomography. Here, we demonstrate it with machine learning-inspired pure-state tomography based on neural-network representations of quantum states. The latter have been shown to efficiently approximate generic classes of complex (pure) states of large quantum systems. We test our method by applying it to experimental data from trapped ion experiments with four to eight qubits.
Measurement of the energy eigenvalues (spectrum) of a multi-qubit system has recently become possible by qubit tunneling spectroscopy (QTS). In the standard QTS experiments, an incoherent probe qubit is strongly coupled to one of the qubits of the sy
Quantum state tomography (QST) is a crucial ingredient for almost all aspects of experimental quantum information processing. As an analog of the imaging technique in the quantum settings, QST is born to be a data science problem, where machine learn
Quantum State Tomography is the task of determining an unknown quantum state by making measurements on identical copies of the state. Current algorithms are costly both on the experimental front -- requiring vast numbers of measurements -- as well as
Work extraction from the Gibbs ensemble by a cyclic operation is impossible, as represented by the second law of thermodynamics. On the other hand, the eigenstate thermalization hypothesis (ETH) states that just a single energy eigenstate can describ
We propose to use neural networks to estimate the rates of coherent and incoherent processes in quantum systems from continuous measurement records. In particular, we adapt an image recognition algorithm to recognize the patterns in experimental sign