ترغب بنشر مسار تعليمي؟ اضغط هنا

DualVD: An Adaptive Dual Encoding Model for Deep Visual Understanding in Visual Dialogue

89   0   0.0 ( 0 )
 نشر من قبل Xiaoze Jiang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Different from Visual Question Answering task that requires to answer only one question about an image, Visual Dialogue involves multiple questions which cover a broad range of visual content that could be related to any objects, relationships or semantics. The key challenge in Visual Dialogue task is thus to learn a more comprehensive and semantic-rich image representation which may have adaptive attentions on the image for variant questions. In this research, we propose a novel model to depict an image from both visual and semantic perspectives. Specifically, the visual view helps capture the appearance-level information, including objects and their relationships, while the semantic view enables the agent to understand high-level visual semantics from the whole image to the local regions. Futhermore, on top of such multi-view image features, we propose a feature selection framework which is able to adaptively capture question-relevant information hierarchically in fine-grained level. The proposed method achieved state-of-the-art results on benchmark Visual Dialogue datasets. More importantly, we can tell which modality (visual or semantic) has more contribution in answering the current question by visualizing the gate values. It gives us insights in understanding of human cognition in Visual Dialogue.



قيم البحث

اقرأ أيضاً

We characterise some of the quirks and shortcomings in the exploration of Visual Dialogue - a sequential question-answering task where the questions and corresponding answers are related through given visual stimuli. To do so, we develop an embarrass ingly simple method based on Canonical Correlation Analysis (CCA) that, on the standard dataset, achieves near state-of-the-art performance on mean rank (MR). In direct contrast to current complex and over-parametrised architectures that are both compute and time intensive, our method ignores the visual stimuli, ignores the sequencing of dialogue, does not need gradients, uses off-the-shelf feature extractors, has at least an order of magnitude fewer parameters, and learns in practically no time. We argue that these results are indicative of issues in current approaches to Visual Dialogue and conduct analyses to highlight implicit dataset biases and effects of over-constrained evaluation metrics. Our code is publicly available.
We propose a new framework for understanding and representing related salient events in a video using visual semantic role labeling. We represent videos as a set of related events, wherein each event consists of a verb and multiple entities that fulf ill various roles relevant to that event. To study the challenging task of semantic role labeling in videos or VidSRL, we introduce the VidSitu benchmark, a large-scale video understanding data source with $29K$ $10$-second movie clips richly annotated with a verb and semantic-roles every $2$ seconds. Entities are co-referenced across events within a movie clip and events are connected to each other via event-event relations. Clips in VidSitu are drawn from a large collection of movies (${sim}3K$) and have been chosen to be both complex (${sim}4.2$ unique verbs within a video) as well as diverse (${sim}200$ verbs have more than $100$ annotations each). We provide a comprehensive analysis of the dataset in comparison to other publicly available video understanding benchmarks, several illustrative baselines and evaluate a range of standard video recognition models. Our code and dataset is available at vidsitu.org.
Evaluating Visual Dialogue, the task of answering a sequence of questions relating to a visual input, remains an open research challenge. The current evaluation scheme of the VisDial dataset computes the ranks of ground-truth answers in predefined ca ndidate sets, which Massiceti et al. (2018) show can be susceptible to the exploitation of dataset biases. This scheme also does little to account for the different ways of expressing the same answer--an aspect of language that has been well studied in NLP. We propose a revised evaluation scheme for the VisDial dataset leveraging metrics from the NLP literature to measure consensus between answers generated by the model and a set of relevant answers. We construct these relevant answer sets using a simple and effective semi-supervised method based on correlation, which allows us to automatically extend and scale sparse relevance annotations from humans to the entire dataset. We release these sets and code for the revised evaluation scheme as DenseVisDial, and intend them to be an improvement to the dataset in the face of its existing constraints and design choices.
In this project, we worked on speech recognition, specifically predicting individual words based on both the video frames and audio. Empowered by convolutional neural networks, the recent speech recognition and lip reading models are comparable to hu man level performance. We re-implemented and made derivations of the state-of-the-art model. Then, we conducted rich experiments including the effectiveness of attention mechanism, more accurate residual network as the backbone with pre-trained weights and the sensitivity of our model with respect to audio input with/without noise.
We present FlipDial, a generative model for visual dialogue that simultaneously plays the role of both participants in a visually-grounded dialogue. Given context in the form of an image and an associated caption summarising the contents of the image , FlipDial learns both to answer questions and put forward questions, capable of generating entire sequences of dialogue (question-answer pairs) which are diverse and relevant to the image. To do this, FlipDial relies on a simple but surprisingly powerful idea: it uses convolutional neural networks (CNNs) to encode entire dialogues directly, implicitly capturing dialogue context, and conditional VAEs to learn the generative model. FlipDial outperforms the state-of-the-art model in the sequential answering task (one-way visual dialogue) on the VisDial dataset by 5 points in Mean Rank using the generated answers. We are the first to extend this paradigm to full two-way visual dialogue, where our model is capable of generating both questions and answers in sequence based on a visual input, for which we propose a set of novel evaluation measures and metrics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا