ﻻ يوجد ملخص باللغة العربية
We present FlipDial, a generative model for visual dialogue that simultaneously plays the role of both participants in a visually-grounded dialogue. Given context in the form of an image and an associated caption summarising the contents of the image, FlipDial learns both to answer questions and put forward questions, capable of generating entire sequences of dialogue (question-answer pairs) which are diverse and relevant to the image. To do this, FlipDial relies on a simple but surprisingly powerful idea: it uses convolutional neural networks (CNNs) to encode entire dialogues directly, implicitly capturing dialogue context, and conditional VAEs to learn the generative model. FlipDial outperforms the state-of-the-art model in the sequential answering task (one-way visual dialogue) on the VisDial dataset by 5 points in Mean Rank using the generated answers. We are the first to extend this paradigm to full two-way visual dialogue, where our model is capable of generating both questions and answers in sequence based on a visual input, for which we propose a set of novel evaluation measures and metrics.
Evaluating Visual Dialogue, the task of answering a sequence of questions relating to a visual input, remains an open research challenge. The current evaluation scheme of the VisDial dataset computes the ranks of ground-truth answers in predefined ca
The key challenge of generative Visual Dialogue (VD) systems is to respond to human queries with informative answers in natural and contiguous conversation flow. Traditional Maximum Likelihood Estimation (MLE)-based methods only learn from positive r
Different from Visual Question Answering task that requires to answer only one question about an image, Visual Dialogue involves multiple questions which cover a broad range of visual content that could be related to any objects, relationships or sem
We characterise some of the quirks and shortcomings in the exploration of Visual Dialogue - a sequential question-answering task where the questions and corresponding answers are related through given visual stimuli. To do so, we develop an embarrass
The Guesser is a task of visual grounding in GuessWhat?! like visual dialogue. It locates the target object in an image supposed by an Oracle oneself over a question-answer based dialogue between a Questioner and the Oracle. Most existing guessers ma