ترغب بنشر مسار تعليمي؟ اضغط هنا

On finite factors of centralizers of parabolic subgroups in Coxeter groups

157   0   0.0 ( 0 )
 نشر من قبل Koji Nuida
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English
 تأليف Koji Nuida




اسأل ChatGPT حول البحث

It has been known that the centralizer $Z_W(W_I)$ of a parabolic subgroup $W_I$ of a Coxeter group $W$ is a split extension of a naturally defined reflection subgroup by a subgroup defined by a 2-cell complex $mathcal{Y}$. In this paper, we study the structure of $Z_W(W_I)$ further and show that, if $I$ has no irreducible components of type $A_n$ with $2 leq n < infty$, then every element of finite irreducible components of the inner factor is fixed by a natural action of the fundamental group of $mathcal{Y}$. This property has an application to the isomorphism problem in Coxeter groups.



قيم البحث

اقرأ أيضاً

130 - Koji Nuida 2010
Despite the significance of the notion of parabolic closures in Coxeter groups of finite ranks, the parabolic closure is not guaranteed to exist as a parabolic subgroup in a general case. In this paper, first we give a concrete example to clarify tha t the parabolic closure of even an irreducible reflection subgroup of countable rank does not necessarily exist as a parabolic subgroup. Then we propose a generalized notion of locally parabolic closure by introducing a notion of locally parabolic subgroups, which involves parabolic ones as a special case, and prove that the locally parabolic closure always exists as a locally parabolic subgroup. It is a subgroup of parabolic closure, and we give another example to show that the inclusion may be strict in general. Our result suggests that locally parabolic closure has more natural properties and provides more information than parabolic closure. We also give a result on maximal locally finite, locally parabolic subgroups in Coxeter groups, which generalizes a similar well-known fact on maximal finite parabolic subgroups.
Let $G$ be a finite group and $sigma ={sigma_{i} | iin I}$ some partition of the set of all primes $Bbb{P}$, that is, $sigma ={sigma_{i} | iin I }$, where $Bbb{P}=bigcup_{iin I} sigma_{i}$ and $sigma_{i}cap sigma_{j}= emptyset $ for all $i e j$. We s ay that $G$ is $sigma$-primary if $G$ is a $sigma _{i}$-group for some $i$. A subgroup $A$ of $G$ is said to be: ${sigma}$-subnormal in $G$ if there is a subgroup chain $A=A_{0} leq A_{1} leq cdots leq A_{n}=G$ such that either $A_{i-1}trianglelefteq A_{i}$ or $A_{i}/(A_{i-1})_{A_{i}}$ is $sigma$-primary for all $i=1, ldots, n$, modular in $G$ if the following conditions hold: (i) $langle X, A cap Z rangle=langle X, A rangle cap Z$ for all $X leq G, Z leq G$ such that $X leq Z$, and (ii) $langle A, Y cap Z rangle=langle A, Y rangle cap Z$ for all $Y leq G, Z leq G$ such that $A leq Z$. In this paper, a subgroup $A$ of $G$ is called $sigma$-quasinormal in $G$ if $L$ is modular and ${sigma}$-subnormal in $G$. We study $sigma$-quasinormal subgroups of $G$. In particular, we prove that if a subgroup $H$ of $G$ is $sigma$-quasinormal in $G$, then for every chief factor $H/K$ of $G$ between $H^{G}$ and $H_{G}$ the semidirect product $(H/K)rtimes (G/C_{G}(H/K))$ is $sigma$-primary.
Following Isaacs (see [Isa08, p. 94]), we call a normal subgroup N of a finite group G large, if $C_G(N) leq N$, so that N has bounded index in G. Our principal aim here is to establish some general results for systematically producing large subgroup s in finite groups (see Theorems A and C). We also consider the more specialised problems of finding large (non-abelian) nilpotent as well as abelian subgroups in soluble groups.
191 - Wenbin Guo , Evgeny Vdovin 2017
Denote by $ u_p(G)$ the number of Sylow $p$-subgroups of $G$. It is not difficult to see that $ u_p(H)leq u_p(G)$ for $Hleq G$, however $ u_p(H)$ does not divide $ u_p(G)$ in general. In this paper we reduce the question whether $ u_p(H)$ divides $ u _p(G)$ for every $Hleq G$ to almost simple groups. This result substantially generalizes the previous result by G. Navarro and also provides an alternative proof for the Navarro theorem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا