ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal perturbations and transition energy thresholds in boundary layer shear flows

133   0   0.0 ( 0 )
 نشر من قبل Chris Val
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Subcritical transition to turbulence in spatially developing boundary layer flows can be triggered efficiently by finite amplitude perturbations. In this work, we employ adjoint-based optimization to identify optimal initial perturbations in the Blasius boundary layer, culminating in the computation of the subcritical transition critical energy threshold and the associated fully localized critical optimum in a spatially extended configuration, the so called minimal seed. By dynamically rescaling the variables with the local boundary layer thickness, we show that the identified edge trajectory approaches the same attracting phase space region as previously reported edge trajectories, and reaches the region more efficiently.

قيم البحث

اقرأ أيضاً

Recent progress in understanding subcritical transition to turbulence is based on the concept of the edge, the manifold separating the basins of attraction of the laminar and the turbulent state. Originally developed in numerical studies of parallel shear flows with a linearly stable base flow, this concept is adapted here to the case of a spatially developing Blasius boundary layer. Longer time horizons fundamentally change the nature of the problem due to the loss of stability of the base flow due to Tollmien--Schlichting (TS) waves. We demonstrate, using a moving box technique, that efficient long-time tracking of edge trajectories is possible for the parameter range relevant to bypass transition, even if the asymptotic state itself remains out of reach. The flow along the edge trajectory features streak switching observed for the first time in the Blasius boundary layer. At long enough times, TS waves co-exist with the coherent structure characteristic of edge trajectories. In this situation we suggest a reinterpretation of the edge as a manifold dividing the state space between the two main types of boundary layer transition, i.e. bypass transition and classical transition.
On the basis of (i) Particle Image Velocimetry data of a Turbulent Boundary Layer with large field of view and good spatial resolution and (ii) a mathematical relation between the energy spectrum and specifically modeled flow structures, we show that the scalings of the streamwise energy spectrum $E_{11}(k_{x})$ in a wavenumber range directly affected by the wall are determined by wall-attached eddies but are not given by the Townsend-Perry attached eddy models prediction of these spectra, at least at the Reynolds numbers $Re_{tau}$ considered here which are between $10^{3}$ and $10^{4}$. Instead, we find $E_{11}(k_{x}) sim k_{x}^{-1-p}$ where $p$ varies smoothly with distance to the wall from negative values in the buffer layer to positive values in the inertial layer. The exponent $p$ characterises the turbulence levels inside wall-attached streaky structures conditional on the length of these structures.
The Lagrangian (LA) and Eulerian Acceleration (EA) properties of fluid particles in homogeneous turbulence with uniform shear and uniform stable stratification are studied using direct numerical simulations. The Richardson number is varied from $Ri=0 $, corresponding to unstratified shear flow, to $Ri=1$, corresponding to strongly stratified shear flow. The probability density functions (pdfs) of both LA and EA have a stretched-exponential shape and they show a strong and similar influence on the Richardson number. The extreme values of the EA are stronger than those observed for the LA. Geometrical statistics explain that the magnitude of the EA is larger than its Lagrangian counterpart due to the mutual cancellation of the Eulerian and convective acceleration, as both vectors statistically show an anti-parallel preference. A wavelet-based scale-dependent decomposition of the LA and EA is performed. The tails of the acceleration pdfs grow heavier for smaller scales of turbulent motion. Hence the flatness increases with decreasing scale, indicating stronger intermittency at smaller scales. The joint pdfs of the LA and EA indicate a trend to stronger correlations with increasing Richardson number and at larger scales of the turbulent motion. A consideration of the terms in the Navier--Stokes equation shows that the LA is mainly determined by the pressure-gradient term, while the EA is dominated by the nonlinear convection term.
We present a modification of a recently developed volume of fluid method for multiphase problems, so that it can be used in conjunction with a fractional step-method and fast Poisson solver, and validate it with standard benchmark problems. We then c onsider emulsions of two-fluid systems and study their rheology in a plane Couette flow in the limit of vanishing inertia. We examine the dependency of the effective viscosity on the volume-fraction (from 10% to 30%) and the Capillary number (from 0.1 to 0.4) for the case of density and viscosity ratio 1. We show that the effective viscosity decreases with the deformation and the applied shear (shear-thinning) while exhibits a non-monotonic behavior with respect to the volume fraction. We report the appearance of a maximum in the effective viscosity curve and compare the results with those of suspensions of rigid and deformable particles and capsules. We show that the flow in the solvent is mostly a shear flow, while it is mostly rotational in the suspended phase; moreover this behavior tends to reverse as the volume fraction increases. Finally, we evaluate the contributions to the total shear stress of the viscous stresses in the two fluids and of the interfacial force between them.
Transport and mixing of scalar quantities in fluid flows is ubiquitous in industry and Nature. Turbulent flows promote efficient transport and mixing by their inherent randomness. Laminar flows lack such a natural mixing mechanism and efficient trans port is far more challenging. However, laminar flow is essential to many problems and insight into its transport characteristics of great importance. Laminar transport, arguably, is best described by the Lagrangian fluid motion (`advection) and the geometry, topology and coherence of fluid trajectories. Efficient laminar transport being equivalent to `chaotic advection is a key finding of this approach. The Lagrangian framework enables systematic analysis and design of laminar flows. However, the gap between scientific insights into Lagrangian transport and technological applications is formidable primarily for two reasons. First, many studies concern two-dimensional (2D) flows yet the real world is three dimensional (3D). Second, Lagrangian transport is typically investigated for idealised flows yet practical relevance requires studies on realistic 3D flows. The present review aims to stimulate further development and utilisation of know-how on 3D Lagrangian transport and its dissemination to practice. To this end 3D practical flows are categorised into canonical problems. First, to expose the diversity of Lagrangian transport and create awareness of its broad relevance. Second, to enable knowledge transfer both within and between scientific disciplines. Third, to reconcile practical flows with fundamentals on Lagrangian transport and chaotic advection. This may be a first incentive to structurally integrate the `Lagrangian mindset into the analysis and design of 3D practical flows.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا